【題目】核潛艇作為三位一體核打擊力量中的一種,對于一個國家來說,是水下核威懾的重要戰(zhàn)略武器.我國的核潛艇發(fā)展迅速,多次出色完成了戰(zhàn)略巡航任務(wù).一次,某型號核潛艇在水下400米的處以600/分鐘的速度向正東方向航行時,發(fā)現(xiàn)斜上方仰角為水面上處有一可疑船只正沿著相同航向航行,跟蹤2分鐘后到達處,再次測得可疑船只在仰角為處,請根據(jù)以上條件求出可疑船只航行的速度.(參考數(shù)據(jù):,,,

【答案】可疑船只航行的速度約為796/分鐘.

【解析】

過點于點,過點的延長線于點,分別在直角ABC和直角DEF中利用53°30°的正切求出ACEF的長,進一步即可求出CF的長,問題即得解決.

解:過點于點,過點的延長線于點.

由題知.

,

,.

(米).

(米/分鐘).

答:可疑船只航行的速度約為796/分鐘.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】每個人都應懷有對水的敬畏之心,從點滴做起,節(jié)水、愛水,保護我們生活的美好世界.某地近年來持續(xù)干旱,為倡導節(jié)約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關(guān)于用水量的統(tǒng)計量不會發(fā)生改變的是(  )

用水量x(噸)

3

4

5

6

7

頻數(shù)

1

2

5

4﹣x

x

A. 平均數(shù)、中位數(shù) B. 眾數(shù)、中位數(shù) C. 平均數(shù)、方差 D. 眾數(shù)、方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的O上,BD與過點C的切線垂直于點D,BDO交于點E

1)求證:BC平分∠DBA

2)連接AEAC,若cosABDOAm,請寫出求四邊形AEDC面積的思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,分別在四條邊上.,,

1)寫出圖中的相似三角形,并證明.

2)當,時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ADBC內(nèi)接于OABO的直徑,對角線AB、CD相交于點E

1)求證:∠BCD+ABD90°;

2)點GAC的延長線上,連接BG,交O于點Q,CACB,∠ABD=∠ABG,作GHCD,交DC的延長線于點H,求證:GQGH

3)在(2)的條件下,過點BBFAD,交CD于點F,GH3CH,若CF4,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線l經(jīng)過點A(﹣2,0)和點B(0,1),點Mx軸上,過點Mx軸的垂線交直線l于點C,若OM=2OA,則經(jīng)過點C的反比例函數(shù)表達式為( 。

A.yB.yC.yD.y

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某建設(shè)工地一個工程有大量的沙石需要運輸.建設(shè)公司車隊有載重量為8噸和10噸的卡車共14輛,全部車輛一次能運輸128噸沙石.

(1)求建設(shè)公司車隊載重量為8噸和10噸的卡車各有多少輛?

(2)隨著工程的進展,車隊需要一次運輸沙石超過190噸,為了完成任務(wù),準備新增購這兩種卡車共7輛,車隊最多新購買載重量為8噸的卡車多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學德育處組織了一次全校2000名學生參加的漢字聽寫大賽.為了解本次大賽的成績,學校德育處隨機抽取了其中200名學生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:

成績x(分)分數(shù)段

頻數(shù)(人)

頻率

50≤x<60

10

0.05

60≤x<70

30

0.15

70≤x<80

40

0.2

80≤x<90

m

0.35

90≤x<100

50

n

頻數(shù)分布直方圖

根據(jù)所給的信息,回答下列問題:

1m=________n=________;

2)補全頻數(shù)分布直方圖;

3)這200名學生成績的中位數(shù)會落在________分數(shù)段;

4)若成績在90分以上(包括90分)為優(yōu)等,請你估計該校參加本次比賽的2000名學生中成績是優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,AB=AC,ADBC邊上的高,EAC中點.

(1)如圖1,過點CCFABF點,連接EF.若∠BAD=20°,求∠AFE的度數(shù);

(2)若M為線段BD上的動點(點M與點D不重合),過點CCNAMN點,射線EN,AB交于P點.

①依題意將圖2補全;

②小宇通過觀察、實驗,提出猜想:在點M運動的過程中,始終有∠APE=2∠MAD

小宇把這個猜想與同學們進行討論,形成了證明該猜想的幾種想法:

想法1:連接DE,要證∠APE=2∠MAD,只需證∠PED=2∠MAD

想法2:設(shè)∠MAD=α,∠DAC=β,只需用αβ表示出∠PEC,通過角度計算得∠APE=2α

想法3:在NE上取點Q,使∠NAQ=2∠MAD,要證∠APE=2∠MAD,只需證△NAQ∽△APQ.……

請你參考上面的想法,幫助小宇證明∠APE =2∠MAD.(一種方法即可)

查看答案和解析>>

同步練習冊答案