【題目】如圖,等邊三角形ABC的邊長是2,M是高CH所在直線上的一個動點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到BN,連接MN,則在點(diǎn)M運(yùn)動過程中,線段MN長度的最小值是(  )

A. B. 1 C. D.

【答案】B

【解析】

由旋轉(zhuǎn)的特性以及∠MBN=60°,可知△BMN是等邊三角形,從而得出MN=BN,再由點(diǎn)到直線的所有線段中垂線段最短可得出結(jié)論

由旋轉(zhuǎn)的特性可知,BM=BN

又∵∠MBN=60°,∴△BMN為等邊三角形MN=BM

∵點(diǎn)M是高CH所在直線上的一個動點(diǎn),∴當(dāng)BMCH,MN最短(到直線的所有線段中垂線段最短)

又∵△ABC為等邊三角形,AB=BC=CA=2,∴當(dāng)點(diǎn)M和點(diǎn)H重合時,MN最短,且有MN=BM=BH=AB=1

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為反比例函數(shù)y=k0)在第一象限內(nèi)圖象上的一點(diǎn),過點(diǎn)P分別作x軸,y軸的垂線交一次函數(shù)y=-x-6的圖象于點(diǎn)AB.若∠AOB=135°,則k的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,BD的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至ABP,連接PP,并延長APBC相交于點(diǎn)Q.

(1)求證:APP是等腰直角三角形;

(2)BPQ的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形中,,,連接,若,,則的長度為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有三點(diǎn)(1,2),(3,1),(-2,-1),其中有兩點(diǎn)同時在反比例函數(shù)的圖象上,將這兩點(diǎn)分別記為A,B,另一點(diǎn)記為C,

(1)求出的值;

(2)求直線AB對應(yīng)的一次函數(shù)的表達(dá)式;

(3)設(shè)點(diǎn)C關(guān)于直線AB的對稱點(diǎn)為D,P是軸上的一個動點(diǎn),直接寫出PC+PD的最小值(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5AC=9,SABC=,動點(diǎn)PA點(diǎn)出發(fā),沿射線AB方向以每秒5個單位的速度運(yùn)動,動點(diǎn)QC點(diǎn)出發(fā),以相同的速度在線段AC上由CA運(yùn)動,當(dāng)Q點(diǎn)運(yùn)動到A點(diǎn)時,P、Q兩點(diǎn)同時停止運(yùn)動,以PQ為邊作正方形PQEFP、Q、E、F按逆時針排序),以CQ為邊在AC上方作正方形QCGH

1)求tanA的值;

2)設(shè)點(diǎn)P運(yùn)動時間為t,正方形PQEF的面積為S,請?zhí)骄?/span>S是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由;

3)當(dāng)t為何值時,正方形PQEF的某個頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,游客在點(diǎn)A處坐纜車出發(fā),沿ABD的路線可至山頂D處.已知ABBD800米,∠α75°,∠β45°,求山高DE(結(jié)果精確到1米).(參考數(shù)據(jù):sin75°=0.966cos75°=0.259,tan75°=3.732,1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點(diǎn)為A,BC交⊙O于點(diǎn)D,點(diǎn)EAC的中點(diǎn).

1)試判斷直線DE與⊙O的位置關(guān)系,并說明理由;

2)若⊙O的半徑為3,∠ACB=40°AC=7.2,求圖中陰影部分的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:如圖,直線軸、軸分別交于點(diǎn)、,經(jīng)過、兩點(diǎn)的拋物線軸的另一個交點(diǎn)為

1)求該拋物線的解析式;

2)若點(diǎn)在直線下方的拋物線上,過點(diǎn)軸交于點(diǎn),軸交于點(diǎn),求的最大值;

3)設(shè)為直線上的點(diǎn),以、、、為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案