【題目】如圖,點O為△ABC外接圓的圓心,以AB為腰作等腰△ABD,使底邊AD經(jīng)過點O,并分別交BC于點E、交⊙O于點F,若∠BAD=30°.
(1)求證:BD是⊙O的切線;
(2)當CA2=CECB時,
①求∠ABC的度數(shù);
②的值.
【答案】(1)證明見解析;(2)①∠ABC=45°;②=.
【解析】
(1)由等腰三角形的性質(zhì)可得∠D=∠BAD=30°=∠ABO,由外角性質(zhì)可得∠BOD=60°,即可得∠OBD=90°,可得結(jié)論;
(2)①由題意可證△ACE∽△BCA,可得∠CAE=∠ABC=∠CBF,由圓周角定理可求∠ABC的度數(shù);
②通過證明△ACE∽△BFE,可得=.
(1)連接OB,
∵△ABD是等腰三角形,∠BAD=30°
∴∠D=∠BAD=30°
∵OA=OB
∴∠BAD=∠ABO=30°
∴∠BOD=60°
∴∠OBD=90°,
即OB⊥BD
∴BD是⊙O的切線;
(2)①連接BF
∵AF是直徑
∴∠ABF=90°
∵CA2=CECB
∴且∠C=∠C
∴△ACE∽△BCA
∴∠CAE=∠ABC
∵∠CAE=∠CBF
∴∠ABC=∠CBF,且∠ABF=90°
∴∠ABC=45°
②連接OC
∵∠CAF=∠ABC=45°,AO=CO
∴∠CAF=∠ACO=45°,∠AOC=90°
∴AC=OA
∵∠BOF=60°,OF=OB
∴△OBF是等邊三角形
∴BF=OF=OB
∵∠CAF=∠CBF,∠AFB=∠ACB
∴△ACE∽△BFE
∴=
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D在AC上,DE⊥AB于點E,且CD=DE.點F在BC上,連接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,以AD為直徑作⊙O交AB于點F,連接DB交⊙O于點H,E是BC上的一點,且BE=BF,連接DE.
(1)求證:DE是⊙O的切線.
(2)若BF=2,BD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有紅、黃兩個布袋,紅布袋中有兩個完全相同的小球,分別標有數(shù)字2和4.黃布袋中有三個完全相同的小球,分別標有數(shù)字﹣2,﹣4和﹣6.小賢先從紅布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從黃布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點M的一個坐標為(x.y)
(1)用列表或畫樹狀圖的方法寫出點M的所有可能坐標;
(2)求點M落在雙曲線y=上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】劉徵是我國古代最杰出的數(shù)學家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計算圓周率的科學方法(注:圓周率=圓的周長與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說:割之彌細,所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個全等的正三角形,每個三角形的邊長均為圓的半徑R.此時圓內(nèi)接正六邊形的周長為6R,如果將圓內(nèi)接正六邊形的周長等同于圓的周長,可得圓周率為3.當正十二邊形內(nèi)接于圓時,如果按照上述方法計算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形的頂點的坐標為,點在軸正半軸上,點在第三象限的雙曲線上,過點作軸交雙曲線于點,連接,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將正偶數(shù)按下表排成5列:
第一列 | 第二列 | 第三列 | 第四列 | 第五列 | |
第一行 | 2 | 4 | 6 | 8 | |
第二行 | 16 | 14 | 12 | 10 | |
第三行 | 18 | 20 | 22 | 24 | |
第四行 | 32 | 30 | 28 | 26 | |
…… |
根據(jù)上面規(guī)律,2020應在( )
A.125行,3列B.125行,2列C.253行,2列D.253行,3列
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:
問題情境:(1)如圖1,四邊形中,,點為邊的中點,連接并延長交的延長線于點,求證:;(表示面積)
問題遷移:(2)如圖2:在已知銳角內(nèi)有一個定點.過點任意作一條直線分別交射線于點.小明將直線繞著點旋轉(zhuǎn)的過程中發(fā)現(xiàn),的面積存在最小值,請問當直線在什么位置時,的面積最小,并說明理由.
實際應用:(3)如圖3,若在道路之間有一村莊發(fā)生疫情,防疫部門計劃以公路和經(jīng)過防疫站的一條直線為隔離線,建立個面積最小的三角形隔離區(qū),若測得試求的面積.(結(jié)果保留根號)(參考數(shù)據(jù):)
拓展延伸:(4)如圖4,在平面直角坐標系中,為坐標原點,點的坐標分別為,過點的直線與四邊形一組對邊相交,將四邊形分成兩個四邊形,求其中以點為頂點的四邊形面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com