【題目】如圖,在平面直角坐標系中,正方形的頂點的坐標為,點軸正半軸上,點在第三象限的雙曲線上,過點軸交雙曲線于點,連接,則的面積為__________

【答案】7

【解析】作輔助線,構(gòu)建全等三角形:過DGHx軸,過AAGGH,過BBMHCM,證明AGD≌△DHC≌△CMB,根據(jù)點D的坐標表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示DE的坐標,根據(jù)三角形面積公式可得結(jié)論.

如圖,過DGHx軸,過AAGGH,過BBMHCM,

D(x,),

∵四邊形ABCD是正方形,

AD=CD=BC,ADC=DCB=90°,

易得AGD≌△DHC≌△CMB,

AG=DH=-x-1,

DG=BM,

1-=-1-x-,

x=-2,

D(-2,-3),CH=DG=BM=1-=4,

AG=DH=-1-x=1,

∴點E的縱坐標為-4,

y=-4時,x=-

E(-,-4),

EH=2-=,

CE=CH-HE=4-=

SCEB=CEBM=××4=7.

故答案為:7.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=5,PB=12,PC=13,若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB,求點P與點P′之間的距離及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),( ,y2)是拋物線上兩點,則y1<y2 , 其中說法正確的是(

A.①②
B.②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答題
(1)【問題提出】
如圖①,已知△ABC是等腰三角形,點E在線段AB上,點D在直線BC上,且ED=EC,將△BCE繞點C順時針旋轉(zhuǎn)60°至△ACF連接EF
試證明:AB=DB+AF

(2)【類比探究】
如圖②,如果點E在線段AB的延長線上,其他條件不變,線段AB,DB,AF之間又有怎樣的數(shù)量關系?請說明理由

(3)如果點E在線段BA的延長線上,其他條件不變,請在圖③的基礎上將圖形補充完整,并寫出AB,DB,AF之間的數(shù)量關系,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個二次函數(shù)的圖象經(jīng)過點A、C、B三點,點A的坐標為(﹣1,0),點B的坐標為(3,0),點C在y軸的正半軸上,且AB=OC.

(1)求點C的坐標;
(2)求這個二次函數(shù)的解析式,并求出該函數(shù)的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(﹣3,0),與y軸交于點C,點D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)若拋物線上有一動點P,使三角形ABP的面積為6,求P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張老師駕車從家出發(fā)到植物園賞花,勻速行駛一段時間后,途中遇到堵車原地等待一會兒,然后加速行駛,到達植物園,參觀結(jié)束后,張老師駕車一路勻速返回,其中x表示汽車從家出發(fā)后所用時間,y表示車離家的距離,下面能反映y與x的函數(shù)關系式的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張老師駕車從家出發(fā)到植物園賞花,勻速行駛一段時間后,途中遇到堵車原地等待一會兒,然后加速行駛,到達植物園,參觀結(jié)束后,張老師駕車一路勻速返回,其中x表示汽車從家出發(fā)后所用時間,y表示車離家的距離,下面能反映y與x的函數(shù)關系式的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AE⊥FE,垂足為E,且E是DC的中點.

(1)如圖①,如果FC⊥DC,AD⊥DC,垂足分別為C,D,且AD=DC,判斷AE是∠FAD的角平分線嗎?(不必說明理由)

(2)如圖②,如果(1)中的條件“AD=DC”去掉,其余條件不變,(1)中的結(jié)論仍成立嗎?請說明理由;

(3)如圖③,如果(1)中的條件改為“AD∥FC”,(1)中的結(jié)論仍成立嗎?請說明理由.

查看答案和解析>>

同步練習冊答案