【題目】如圖所示是某公園為迎接“中國(guó)–南亞博覽會(huì)”設(shè)置的一休閑區(qū).,弧的半徑長(zhǎng)是米,是的中點(diǎn),點(diǎn)在弧上,,則圖中休閑區(qū)(陰影部分)的面積是( )
A. 米2 B. 米2 C. 米2 D. 米2
【答案】C
【解析】
先根據(jù)半徑OA長(zhǎng)是6米,C是OA的中點(diǎn)可知OC=OA=3米,再在Rt△OCD中,利用勾股定理求出CD的長(zhǎng),根據(jù)銳角三角函數(shù)的定義求出∠DOC的度數(shù),由S陰影=S扇形AOD-S△DOC即可得出結(jié)論.
連接OD,
∵弧AB的半徑OA長(zhǎng)是6米,C是OA的中點(diǎn),
∴OC=OA=3米,
∵∠AOB=90°,CD∥OB,
∴CD⊥OA,
在Rt△OCD中,
∵OD=6,OC=3,
∴CD=米,
∵sin∠DOC=,
∴∠DOC=60°,
∴S陰影=S扇形AOD-S△DOC==6π(米2).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】建立模型:
如圖1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直線ED經(jīng)過(guò)點(diǎn)B,過(guò)A作AD⊥ED于D,過(guò)C作CE⊥ED于E.則易證△ADB≌△BEC.這個(gè)模型我們稱之為“一線三垂直”.它可以把傾斜的線段AB和直角∠ABC轉(zhuǎn)化為橫平豎直的線段和直角,所以在平面直角坐標(biāo)系中被大量使用.
模型應(yīng)用:
(1)如圖2,點(diǎn)A(0,4),點(diǎn)B(3,0),△ABC是等腰直角三角形.
①若∠ABC=90°,且點(diǎn)C在第一象限,求點(diǎn)C的坐標(biāo);
②若AB為直角邊,求點(diǎn)C的坐標(biāo);
(2)如圖3,長(zhǎng)方形MFNO,O為坐標(biāo)原點(diǎn),F的坐標(biāo)為(8,6),M、N分別在坐標(biāo)軸上,P是線段NF上動(dòng)點(diǎn),設(shè)PN=n,已知點(diǎn)G在第一象限,且是直線y=2x一6上的一點(diǎn),若△MPG是以G為直角頂點(diǎn)的等腰直角三角形,請(qǐng)直接寫出點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是甲乙兩個(gè)工程隊(duì)完成某項(xiàng)工程的進(jìn)度圖,首先是甲獨(dú)做了10天,然后兩隊(duì)合做,完成剩下的工程.
(1)甲隊(duì)單獨(dú)完成這項(xiàng)工程,需要多少天?
(2)求乙隊(duì)單獨(dú)完成這項(xiàng)工程需要的天數(shù);
(3)實(shí)際完成的時(shí)間比甲獨(dú)做所需的時(shí)間提前多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中邊AB的垂直平分線分別交BC、AB于點(diǎn)D、E, AE=3cm,△ADC的周長(zhǎng)為9cm,則△ABC的周長(zhǎng)是( )cm.
A.9B.12C.15D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是弧的中點(diǎn),垂直于弦于,若弦的長(zhǎng)度為,線段的長(zhǎng)度是,那么線段的長(zhǎng)度是________.(用含有的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在同一條直線上,點(diǎn)A,D在直線BE的兩側(cè),AB∥DE,BF=CE,添加一個(gè)適當(dāng)?shù)臈l件后,仍不能使得△ABC≌△DEF( )
A.AC=DFB.AC∥DFC.∠A=∠DD.AB=DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的△ABC中,AB>AC>BC,且D為BC上一點(diǎn),F(xiàn)打算在AB上找一點(diǎn)P,在AC上找一點(diǎn)Q,使得△APQ與以P、D、Q為頂點(diǎn)的三角形全等,以下是甲、乙兩人的作法:
甲:連接AD,作AD的中垂線分別交AB、AC于P點(diǎn)、Q點(diǎn),則P、Q兩點(diǎn)即為所求;
乙:過(guò)D作與AC平行的直線交AB于P點(diǎn),過(guò)D作與AB平行的直線交AC于Q點(diǎn),則P、Q兩點(diǎn)即為所求;
對(duì)于甲、乙兩人的作法,下列判斷何者正確( 。?
A.兩人皆正確B.兩人皆錯(cuò)誤C.甲正確,乙錯(cuò)誤D.甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,頂角為36°的等腰三角形稱為銳角黃金三角形.它的底與腰之比為≈0.618,記為k.受此啟發(fā),八年級(jí)數(shù)學(xué)課題組探究底角為36°的等腰三角形,也稱鈍角黃金三角形,如圖2.
(1)在圖1和圖2中,若DE=BC,求證:EF=AB;
(2)求鈍角黃金三角形底與腰的比值(用含k的式子表示);
(3)如圖3,在鈍角黃金三角形ABC中,AD,DE依次分割出鈍角黃金三角形△ADC,△ADE.若AB=1,記△ABC,△ADC,△ADE分別為第1,2,3個(gè)鈍角黃金三角形,以此類推,求第2020個(gè)鈍角黃金三角形的周長(zhǎng)(用含k的式子表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com