【題目】如圖,中,,平分于點,于點,如果,,那么的長為________的長為_______.

【答案】4 3

【解析】

依據(jù)ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根據(jù)勾股定理可得AB的長,進而得出EB的長;設DE=CD=x,則BD=8-x,依據(jù)勾股定理可得,RtBDE中,DE2+BE2=BD2,解方程即可得到DE的長.

AD平分CAB,

∴∠CAD=EAD,

∵∠C=90°,DEAB,

∴∠C=AED=90°,

AD=AD,

∴△ACD≌△AED(AAS),

AC=AE=6cm,CD=ED,

RtABC中,AB==10(cm),

BE=AB-AE=10-6=4(cm),

設DE=CD=x,則BD=8-x,

RtBDE中,DE2+BE2=BD2,

x2+42=(8-x)2

解得x=3,

DE=3cm,

故答案為:4,3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,ABAC,點E在△ABC外一點,CEAE于點ECEBC

(1)作出△ABC的角平分線AD.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡.)

(2)求證:∠ACE=∠B

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中, , ,DAB邊的中點,EAC邊上一點,聯(lián)結DE,過點DBC邊于點F,聯(lián)結EF

(1)如圖1,當時,求EF的長;

(2)如圖2,當點EAC邊上移動時, 的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;

(3)如圖3,聯(lián)結CDEF于點Q,當是等腰三角形時,請直接寫出BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知AD是△ABC的邊BC上的中線.

(1)作出△ABD的邊BD上的高;

(2)若△ABC的面積為10,求△ADC的面積;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是⊙O的直徑,∠EOD=72°,AE交⊙O于點B,且AB=OC,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC、BD相交于點O,EF過點O且與AB、CD分別相交于點E、F,連接EC.

(1)求證:OE=OF;
(2)若EF⊥AC,△BEC的周長是10,求ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點,在數(shù)軸上對應的數(shù)為,則稱為點之間的距離,記作.已知數(shù)軸上兩點,對應的數(shù)分別為,且滿足,點為數(shù)軸上一動點,其對應的數(shù)為.

1)若點到點的距離相等,則點對應的數(shù)是_________.

2)數(shù)軸上是否存在點,使?若存在,請求出的值;若不存在,請說明理由.

3)當點以每秒1個單位長度的速度從原點向左運動時,點以每秒3個單位長度向左運動,點以每秒15個單位長度向左運動,若它們同時出發(fā),幾秒鐘后點到點的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:通過小學的學習我們知道,分數(shù)可分為真分數(shù)假分數(shù),而假分數(shù)都可化為常分數(shù),如: 2+ 2 .我們定義:在分式中,對于只含有一個字母的分式,當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式;當分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式.如 這樣的分式就是假分式;再如: , 這樣的分式就是真分式.類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).如: =1- ;

解決下列問題:

1)分式 分式(填真分式假分式);

2 將假分式化為帶分式;

3)如果 x 為整數(shù),分式 的值為整數(shù),求所有符合條件的 x 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20154月份的尼泊爾強震曾經(jīng)導致珠峰雪崩,在珠峰搶險時,需8組登山隊員步行運送物資,要求每組分配的人數(shù)相同,若按每組人數(shù)比預定人數(shù)多分配1人,則總數(shù)會超過100人;若按每組人數(shù)比預定人數(shù)少分配1人,則總數(shù)不夠90人,那么預定每組分配的人數(shù)是(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

同步練習冊答案