【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點(diǎn),O是AB上一點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交AB、AC于點(diǎn)E、F.
(1)用尺規(guī)補(bǔ)全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當(dāng)AD=2,∠CAD=30°時,求劣弧AD的長.
【答案】(1)見解析;(2)見解析;(3)π
【解析】
(1)作AD的垂直平分線交AB于點(diǎn)O,以OA為半徑畫圓O分別交AB、AC于點(diǎn)E、F,則圓O即為所求;
(2)連接OD,得到OD=OA,根據(jù)等腰三角形的性質(zhì)得到∠OAD=∠ODA,等量代換得到∠ODA=∠CAD,根據(jù)平行線的判定定理可得,OD∥AC,再根據(jù)平行線的性質(zhì)可求證結(jié)論;
(3)連接DE,根據(jù)圓周角定理得到∠ADE=90°,根據(jù)三角形內(nèi)角和定理得到∠AOD=120°,根據(jù)三角函數(shù)的定義得到AE=,再根據(jù)弧長公式可得結(jié)論.
(1)解:如圖所示,
(2)證明:連結(jié)OD,則OD=OA,
∴∠OAD=∠ODA,
∵∠OAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
∵∠C=90°,
∴∠ODC=90°,
即BC⊥OD,
∵BC經(jīng)過半徑OD的外端
∴BC與⊙O相切;
(3)解:連接DE,
∵AE是⊙O的直徑,
∴∠ADE=90°,
∵∠OAD=∠ODA=∠CAD=30°,
∴∠AOD=120°,
在Rt△ADE中,
AE= = =4,
∴⊙O的半徑=2,
∴劣弧AD的長==π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O 的半徑長為2,點(diǎn)C為直徑AB的延長線上一點(diǎn),且BC=2.過點(diǎn)C任作一條直線l.若直線l上總存在點(diǎn)P,使得過點(diǎn)P所作的⊙O 的兩條切線互相垂直,則∠ACP的最大值等于__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家在A處,門前有一口池塘,隔著池塘有一條公路l,AB是A到l的小路.現(xiàn)新修一條路AC到公路l.小明測量出∠ACD=31°,∠ABD=45°,BC=100m.請你幫小明計算他家到公路l的距離AD的長度?(精確到1m;參考數(shù)據(jù)tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對“隔離直線”給出如下定義:點(diǎn)是圖形上的任意一點(diǎn),點(diǎn)是圖形上的任意一點(diǎn),若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)的坐標(biāo)是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式:若不存在,請說明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側(cè),點(diǎn)是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,我們將橫、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.若拋物線y=ax2﹣2ax+a+3與x軸圍成的區(qū)域內(nèi)(不包括拋物線和x軸上的點(diǎn))恰好有8個“整點(diǎn)”,則a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)數(shù)學(xué)興趣小組在一次課外學(xué)習(xí)與探究中遇到一些新的數(shù)學(xué)符號,他們將其中某些材料摘錄如下:
對于三個實(shí)數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.
請結(jié)合上述材料,解決下列問題:
(1)M{(﹣2)2,22,﹣22}=_____;
(2)若min{3﹣2x,1+3x,﹣5}=﹣5,則x的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個盒子里有3個相同的小球,將3個小球分別標(biāo)示號碼1、2、3,每次從盒子里隨機(jī)取出1個小球且取后放回,預(yù)計取球10次.若規(guī)定每次取球時,取出的號碼即為得分,則前八次的取球得分情況如下表所示
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 3 |
(1)設(shè)第1次至第8次取球得分的平均數(shù)為,求的值:
(2)求事件“第9次和第10次取球得分的平均數(shù)等于”發(fā)生的概率;(列表法或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若整數(shù)a使關(guān)于x的分式方程的解為整數(shù),且使關(guān)于y的不等式組有解,且最多有4個整數(shù)解,則符合條件的所有整數(shù)a的和為( )
A.﹣3B.﹣8C.﹣13D.﹣17
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com