【題目】在平面直角坐標(biāo)系中,對“隔離直線”給出如下定義:點(diǎn)是圖形上的任意一點(diǎn),點(diǎn)是圖形上的任意一點(diǎn),若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)的坐標(biāo)是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式:若不存在,請說明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側(cè),點(diǎn)是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.
【答案】(1)①④;(2);(3)或
【解析】
(1)根據(jù)的“隔離直線”的定義即可解決問題;
(2)存在,連接,求得與垂直且過的直接就是“隔離直線”,據(jù)此即可求解;
(3)分兩種情形正方形在x軸上方以及在x軸下方時,分別求出正方形的一個頂點(diǎn)在直線上時的t的值即可解決問題.
(1)根據(jù)的“隔離直線”的定義可知,是圖1函數(shù)的圖象與正方形OABC的“隔離直線”;直線也是圖1函數(shù)的圖象與正方形OABC的“隔離直線”;而與不滿足圖1函數(shù)的圖象與正方形OABC的“隔離直線”的條件;
故答案為:①④;
(2)存在,
理由如下:
連接,過點(diǎn)作軸于點(diǎn),如圖,
在Rt△DGO中,,
∵⊙O的半徑為,
∴點(diǎn)D在⊙O上.
過點(diǎn)D作DH⊥OD交y軸于點(diǎn)H,
∴直線DH是⊙O的切線,也是△EDF與⊙O的“隔離直線”.
設(shè)直線OD的解析式為,
將點(diǎn)D(2,1)的坐標(biāo)代入得,
解得:,
∵DH⊥OD,
∴設(shè)直線DH的解析式為,
將點(diǎn)D(2,1)的坐標(biāo)代入得,
解得:,
∴直線DH的解析式為,
∴“隔離直線”的表達(dá)式為;
(3)如圖:
由題意點(diǎn)F的坐標(biāo)為(),
當(dāng)直線經(jīng)過點(diǎn)F時,,
∴,
∴直線,即圖中直線EF,
∵正方形A1B1C1D1的中心M(1,t),
過點(diǎn)作⊥y軸于點(diǎn)G,
∵點(diǎn)是正方形的中心,且,
∴B1C1,,
∴正方形A1B1C1D1的邊長為2,
當(dāng)時,,
∴點(diǎn)C1的坐標(biāo)是(),此時直線EF是函數(shù))的圖象與正方形A1B1C1D1的“隔離直線”,
∴點(diǎn)的坐標(biāo)是(-1,2),
此時;
當(dāng)直線與只有一個交點(diǎn)時,
,消去y得到,
由,可得,
解得:,
同理,此時點(diǎn)M的坐標(biāo)為:(),
∴,
根據(jù)圖象可知:
當(dāng)或時,直線是函數(shù))的圖象與正方形A1B1C1D1的“隔離直線”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點(diǎn),是上兩點(diǎn),且,連接,,過點(diǎn)作交延長線于點(diǎn),垂足為.
(1)求證:是的切線;
(2)若,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】內(nèi)接于邊于點(diǎn),連接.
如圖1,求證:;
如圖2,延長交于點(diǎn),點(diǎn)在線段上,射線交邊于點(diǎn),連接,若,求證:;
如圖3,在的條件下,連接,若,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P,Q分別是AD和AE上的動點(diǎn),則DQ+PQ的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為,點(diǎn),分別在軸,軸的正半軸上運(yùn)動,且,下列結(jié)論:
①
②當(dāng)時四邊形是正方形
③四邊形的面積和周長都是定值
④連接,,則,其中正確的有( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于D點(diǎn),O是AB上一點(diǎn),經(jīng)過A、D兩點(diǎn)的⊙O分別交AB、AC于點(diǎn)E、F.
(1)用尺規(guī)補(bǔ)全圖形(保留作圖痕跡,不寫作法);
(2)求證:BC與⊙O相切;
(3)當(dāng)AD=2,∠CAD=30°時,求劣弧AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=-x2+mx+3與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(3,0),拋物線與直線y=-x+3交于C、D兩點(diǎn).連接BD、AD.
(1)求m的值.
(2)拋物線上有一點(diǎn)P,滿足S△ABP=4S△ABD,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:內(nèi)接于⊙,連接并延長交于點(diǎn),交⊙于點(diǎn),滿足.
(1)如圖1,求證:;
(2)如圖2,連接,點(diǎn)為弧上一點(diǎn),連接,=,過點(diǎn)作,垂足為點(diǎn),求證:;
(3)如圖3,在(2)的條件下,點(diǎn)為上一點(diǎn),分別連接,,過點(diǎn)作,交⊙于點(diǎn),,,連接,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷,在一次購物中,張華和李紅都想從“微信”、“支付寶”、“銀行卡”、“現(xiàn)金”四種支付方式中選一種方式進(jìn)行支付.
(1)張華用“微信”支付的概率是______.
(2)請用畫樹狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中“微信”、“支付寶”、“銀行卡”、“現(xiàn)金”分別用字母“A”“B”“C”“D”代替)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com