6.觀察下列等式:
第1個(gè)等式:a1=$\frac{1}{1×3}$=$\frac{1}{2}$×(1-$\frac{1}{3}$);
第2個(gè)等式:a2=$\frac{1}{3×5}$=$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$);
第3個(gè)等式:a3=$\frac{1}{5×7}$=$\frac{1}{2}$×($\frac{1}{5}$-$\frac{1}{7}$);
第4個(gè)等式:a4=$\frac{1}{7×9}$=$\frac{1}{2}$×($\frac{1}{7}$-$\frac{1}{9}$)…
請解答下列問題:
(1)用含有n(n為正整數(shù))的式子表示第n個(gè)等式;
(2)求a1+a2+a3+a4+…+a100的值.
分析 (1)由已知等式知,連續(xù)奇數(shù)乘積的倒數(shù)等于各自倒數(shù)差的一半,據(jù)此可得;
(2)根據(jù)以上規(guī)律可得原式=$\frac{1}{2}$×(1-$\frac{1}{3}$)+$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$)+$\frac{1}{2}$×($\frac{1}{7}$-$\frac{1}{9}$)+…+$\frac{1}{2}$($\frac{1}{199}$-$\frac{1}{201}$)=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{199}$-$\frac{1}{201}$),即可得出答案.
解答 解:(1)由已知等式知,連續(xù)奇數(shù)乘積的倒數(shù)等于各自倒數(shù)差的一半,
∴第n個(gè)等式為$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$);
(2)原式=$\frac{1}{2}$×(1-$\frac{1}{3}$)+$\frac{1}{2}$×($\frac{1}{3}$-$\frac{1}{5}$)+$\frac{1}{2}$×($\frac{1}{7}$-$\frac{1}{9}$)+…+$\frac{1}{2}$($\frac{1}{199}$-$\frac{1}{201}$)
=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{199}$-$\frac{1}{201}$)
=$\frac{1}{2}$×(1-$\frac{1}{201}$)
=$\frac{1}{2}$×$\frac{200}{201}$
=$\frac{100}{201}$.
點(diǎn)評 本題主要考查數(shù)字的變化規(guī)律,根據(jù)題意得出連續(xù)奇數(shù)乘積的倒數(shù)等于各自倒數(shù)差的一半且掌握裂項(xiàng)求和是解題的關(guān)鍵.