【題目】如圖,在□ABCD中,AC與BD相交于點(diǎn)O,過(guò)點(diǎn)B作BE∥AC,聯(lián)結(jié)OE交BC于點(diǎn)F,點(diǎn)F為BC的中點(diǎn).
(1)求證:四邊形AOEB是平行四邊形;
(2)如果∠OBC=∠E,求證:BOOC=ABFC.
【答案】(1)見解析;(2)見解析.
【解析】
(1)根據(jù)BE∥AC,△COF∽△BEF,又因?yàn)?/span>F為BC的中點(diǎn)可得CF=BF,所以BE=OC=OA,結(jié)合BE∥AC,即可證得AOEB是平行四邊形.
(2)根據(jù)題意可證得△COB∽△CBA,即,在依據(jù)AC=2OC,BC=2FC,可得,即可證得BOOC=ABFC
(1)∵BE∥AC,
∴△COF∽△BEF
∴
∵點(diǎn)F為BC的中點(diǎn),
∴CF=BF,
∴OC=BE
∵四邊形ABCD是平行四邊形,
∴AO=CO
∴AO=BE
∵BE∥AC,
∴四邊形AOEB是平行四邊形
(2)∵四邊形AOEB是平行四邊形,
∴∠BAO=∠E
∵∠OBC=∠E,
∴∠BAO=∠OBC
∵∠ACB=∠BCO,
∴△COB∽△CBA
∴
∵四邊形ABCD是平行四邊形,
∴AC=2OC
∵點(diǎn)F為BC的中點(diǎn),
∴BC=2FC
∴
即BOOC=ABFC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),在Rt△ABC中,∠A=90°,AB=AC=4,D、E分別是AB,AC的中點(diǎn).若等腰Rt△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),得到等腰Rt△AD1E1,如圖(2),設(shè)旋轉(zhuǎn)角為α(0<α≤180°),記直線BD1與CE1的交點(diǎn)為P.
(1)求證:BD1=CE1;
(2)當(dāng)∠CPD1=2∠CAD1時(shí),則旋轉(zhuǎn)角為α= (直接寫結(jié)果)
(3)連接PA,△PAB面積的最大值為 (直接寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ΔABC中,AB=AC,若將ΔABC繞點(diǎn)C順時(shí)針180得到ΔFEC。
(1)試猜想AE與BF有何關(guān)系,并說(shuō)明理由;
(2)若ΔABC的面積為3cm2,求四邊形ABFE的面積;
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABFE為矩形?說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,AF是⊙O的弦,AF⊥BC,垂足為D,點(diǎn)E為上一點(diǎn),且BE=CF,
(1)求證:AE是⊙O的直徑;
(2)若∠ABC=∠EAC,AE=4,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)、,將線段繞著原點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)角度到,連接,將繞著點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)角度至,連接.
(1)當(dāng),時(shí),求的長(zhǎng).
(2)當(dāng),時(shí),求的長(zhǎng).
(3)已知,當(dāng)時(shí),改變的大小,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2-mx+c與x軸交于點(diǎn)A(x1,0)B(x2,0),與y軸交于點(diǎn)C(0,c).若△ABC為直角三角形,求c的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,我國(guó)的一艘海監(jiān)船在釣魚島A附近沿正東方向航行,船在B點(diǎn)時(shí)測(cè)得釣魚島A在船的北偏東60°方向,船以50海里/時(shí)的速度繼續(xù)航行2小時(shí)后到達(dá)C點(diǎn),此時(shí)釣魚島A在船的北偏東30°方向.請(qǐng)問(wèn)船繼續(xù)航行多少海里與釣魚島A的距離最近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)和點(diǎn),給出如下定義:若,則稱點(diǎn)為點(diǎn)的限變點(diǎn).例如:點(diǎn)的限變點(diǎn)的坐標(biāo)是,點(diǎn)的限變點(diǎn)的坐標(biāo)是.
(1)①點(diǎn)的限變點(diǎn)的坐標(biāo)是___________;
②在點(diǎn),中有一個(gè)點(diǎn)是函數(shù)圖象上某一個(gè)點(diǎn)的限變點(diǎn),這個(gè)點(diǎn)是_______________;
(2)若點(diǎn)在函數(shù)的圖象上,其限變點(diǎn)的縱坐標(biāo)的取值范圍是,求的取值范圍;
(3)若點(diǎn)在關(guān)于的二次函數(shù)的圖象上,其限變點(diǎn)的縱坐標(biāo)的取值范圍是或,其中.令,求關(guān)于的函數(shù)解析式及的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com