【題目】如圖,CD為⊙O的直徑,弦ABCD,垂足為E,,CE=1,AB=6,則弦AF的長(zhǎng)度為___.

【答案】

【解析】

連接OA、OBOBAFG,如圖,利用垂徑定理得到AE=BE=3,設(shè)⊙O的半徑為r,則OE=r-1,OA=r,根據(jù)勾股定理得到,解得r=5,再利用垂徑定理得到OBAF,AG=FG,則,,然后解方程組求出AG,從而得到AF的長(zhǎng).

連接OA、OB,OBAFG,如圖,

ABCD

AE=BE=AB=3,

設(shè)⊙O的半徑為r,則OE=r1,OA=r

RtOAE,32+(r1)2=r2,解得r=5

∵弧AB=BF,

OBAF,AG=FG,

RtOAG,AG2+OG2=52,①

RtABG,AG2+(5OG)2=62,②

解由①②組成的方程組得到AG=,

AF=2AG=.

故答案為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①4acb2;②方程ax2+bx+c=0的兩個(gè)根是x1=1,x2=3;③3a+c0;④當(dāng)x0時(shí),yx增大而增大,其中結(jié)論正確的個(gè)數(shù)是( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點(diǎn)O,過點(diǎn)BBEAC,聯(lián)結(jié)OEBC于點(diǎn)F,點(diǎn)FBC的中點(diǎn).

1)求證:四邊形AOEB是平行四邊形;

2)如果∠OBC=∠E,求證:BOOCABFC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)α度到△A1B1C1的位置,ABA1C1相交于點(diǎn)D,ACA1C1、BC1分別交于點(diǎn)E. F.

(1)求證:△BCF≌△BA1D.

(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB6,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)30°后得到△A1BC1,則陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=x+nx軸、y軸分別交于B、C兩點(diǎn),拋物線y=ax2+bx+3(a0)CB兩點(diǎn),交x軸于另一點(diǎn)A,連接AC,且tanCAO=3

(1)求拋物線的解析式;

(2)若點(diǎn)P是射線CB上一點(diǎn),過點(diǎn)Px軸的垂線,垂足為H,交拋物線于Q,設(shè)P點(diǎn)橫坐標(biāo)為t,線段PQ的長(zhǎng)為d,求出dt之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;

(3)(2)的條件下,當(dāng)點(diǎn)P在線段BC上時(shí),設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2(m+3)y+(5m22m+13)=0 (m為常數(shù))的兩個(gè)實(shí)數(shù)根,點(diǎn)M在拋物線上,連接MQ、MH、PM,且.MP平分QMH,求出t值及點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,AD//BC,對(duì)角線AC、BD相交于點(diǎn)O ,若,等于()

A. 16B. 13C. 14D. 15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】參與兩個(gè)數(shù)學(xué)活動(dòng),再回答問題:

活動(dòng):觀察下列兩個(gè)兩位數(shù)的積兩個(gè)乘數(shù)的十位上的數(shù)都是9,個(gè)位上的數(shù)的和等于,猜想其中哪個(gè)積最大?

,,,,

活動(dòng):觀察下列兩個(gè)三位數(shù)的積兩個(gè)乘數(shù)的百位上的數(shù)都是9,十位上的數(shù)與個(gè)位上的數(shù)組成的數(shù)的和等于,猜想其中哪個(gè)積最大?

,,,,

分別寫出在活動(dòng)、中你所猜想的是哪個(gè)算式的積最大?

對(duì)于活動(dòng),請(qǐng)用二次函數(shù)的知識(shí)證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要修一個(gè)圓形噴水池,在池中心豎直安裝一根水管,水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案