【題目】已知:如圖,△ABC內(nèi)接于⊙O,AF是⊙O的弦,AF⊥BC,垂足為D,點(diǎn)E為上一點(diǎn),且BE=CF,
(1)求證:AE是⊙O的直徑;
(2)若∠ABC=∠EAC,AE=4,求AC的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)AC=2.
【解析】
(1)由BE=CF,則可證得∠BAE=∠FAC,根據(jù)圓周角定理和等角的余角相等證明即可;
(2)連接OC,根據(jù)圓周角定理證明△AOC是等腰直角三角形,由勾股定理即可求得.
(1)證明:∵BE=CF,
∴ ,
∴∠BAE=∠CAF,
∵AF⊥BC,
∴∠ADC=90°,
∴∠FAC+∠ACD=90°,
∵∠E=∠ACD,
∴∠BAE+∠E=90°,
∴∠ABE=90°,
∴ AE是⊙O的直徑 .
(2)解:連結(jié)OC,
∴∠AOC=2∠ABC,
∵∠ABC=∠CAE,
∴∠AOC=2∠CAE,
∵OA=OA,
∴∠CAO=∠ACO=∠AOC,
∴△AOC為等腰直角三角形,
∵AE=4,
∴AO=CO=2,
∴AC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足為D.AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F
(1)求證:CE=CF.
(2)將圖(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使點(diǎn)E’落在BC邊上,其它條件不變,如圖(2)所示.試猜想:BE'與CF有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2;②方程ax2+bx+c=0的兩個(gè)根是x1=﹣1,x2=3;③3a+c>0;④當(dāng)x<0時(shí),y隨x增大而增大,其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.建立如圖所示的直角坐標(biāo)系,
請(qǐng)?jiān)趫D中標(biāo)出△ABC的外接圓的圓心P的位置,并填寫(xiě): 圓心P的坐標(biāo):P( , )
(2)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,畫(huà)出圖
形,并求△ABC掃過(guò)的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AC與BD相交于點(diǎn)O,過(guò)點(diǎn)B作BE∥AC,聯(lián)結(jié)OE交BC于點(diǎn)F,點(diǎn)F為BC的中點(diǎn).
(1)求證:四邊形AOEB是平行四邊形;
(2)如果∠OBC=∠E,求證:BOOC=ABFC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時(shí),判定四邊形A1BCE的形狀并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】參與兩個(gè)數(shù)學(xué)活動(dòng),再回答問(wèn)題:
活動(dòng):觀察下列兩個(gè)兩位數(shù)的積兩個(gè)乘數(shù)的十位上的數(shù)都是9,個(gè)位上的數(shù)的和等于,猜想其中哪個(gè)積最大?
,,,,,,,,.
活動(dòng):觀察下列兩個(gè)三位數(shù)的積兩個(gè)乘數(shù)的百位上的數(shù)都是9,十位上的數(shù)與個(gè)位上的數(shù)組成的數(shù)的和等于,猜想其中哪個(gè)積最大?
,,,,,,.
分別寫(xiě)出在活動(dòng)、中你所猜想的是哪個(gè)算式的積最大?
對(duì)于活動(dòng),請(qǐng)用二次函數(shù)的知識(shí)證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com