【題目】如圖,在平面直角坐標系中,OAOB,ABx軸于點C,點A(,1)在反比例函數(shù)y=的圖象上.

(1)求k的值;

(2)若將BOA繞點B按逆時針方向旋轉60°,得到BDE,判斷點E是否在該反比例函數(shù)的圖象上,并說明理由.

【答案】(1)k=;點E在該反比例函數(shù)的圖像上,理由見解析.

【解析】

(1)把A(,1)代入反比例函數(shù)y=,求k;(2)由勾股定理求出AO,再證△AOC∽△ABO,得,求出AB,OB,由sin∠ABO=,求出∠ABO=30°,由旋轉性質求得OB=BD=2,OA=DE=2,再求得BD-OC=2,BC-DE=1,故E(-,-1).可判斷E的位置.

解:(1)∵點A(,1)在反比例函數(shù)y

的圖像上,∴k×1.

(2)E在該反比例函數(shù)的圖像上.理由如下:

A(,1)

AO2.

AOOBABx軸,易證AOC∽△ABO

,即

AB4,

OB

2,

sinABO,

∴∠ABO30°.由旋轉可知BOA≌△BDE,∠OBD60°,

OBBD2,OADE2,∠BOA=∠BDE90°,∠ABD30°60°90°.

BDOC2BCDE4121,∴E(,-1)

∵-×(1),

∴點E在該反比例函數(shù)的圖像上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在操場上做游戲,他發(fā)現(xiàn)地上有一個不規(guī)則的封閉圖形ABC.為了知道它的面積,他在封閉圖形內劃出了一個半徑為1米的圓,在不遠處向圖形內擲石子,且記錄如下:

(1)隨著次數(shù)的增多,小明發(fā)現(xiàn)mn的比值在一個常數(shù)k附近波動,請你寫出k的值。

(2)請利用學過的知識求出封閉圖形ABC的大致面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ADF△BCE中,∠A=∠B,點D、E、F、C在同﹣直線上,有如下三個關系式:①AD=BC;②DE=CF;③BE∥AF。

(1)請用其中兩個關系式作為條件,另一個作為結論,寫出所有你認為正確的命題.(用序號寫出命題書寫形式,如:如果①、②,那么③)

(2)選擇(1)中你寫出的一個命題,說明它正確的理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長方形ACDF中,ACDF,點BCD上,點EDF上,BCDEaACBDb,ABBEc,且ABBE

1)用兩種不同的方法表示出長方形ACDF的面積S,并探求a,b,c之間的等量關系(需要化簡)

2)請運用(1)中得到的結論,解決下列問題:

①求當c5a3時,求S的值;

②當cb8,a12時,求S的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,AB12厘米,BC8厘米,CD14厘米,∠B=∠C,點E為線段AB的中點.如果點P在線段BC上以3厘米秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.當點Q的運動速度為_____厘米/秒時,能夠使△BPE與以C、PQ三點所構成的三角形全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,正方形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(2,2),反比例函數(shù)x0k≠0)的圖像經(jīng)過線段BC的中點D.

1)求k的值;

2)若點P(x,y)在該反比例函數(shù)的圖像上運動(不與點D重合),過點PPRy軸于點R,PQBC所在直線于點Q,記四邊形CQPR的面積為S,求S關于x的解析式并寫出x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點,其中點到點的距離為3,點到點的距離為7,如圖所示:設點所對應的數(shù)的和是

1)若以為原點,則的值是

2)若原點在圖中數(shù)軸上,且點到原點的距離為4,求的值.

3)動點點出發(fā),以每秒2個單位長度的速度向終點移動,動點同時從點出發(fā),以每秒1個單位的速度向終點移動,當幾秒后,兩點間的距離為2?(直接寫出答案即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一副三角板按不同位置擺放,∠α與∠β互余的是_____,∠α與∠β互補的是______,∠α與∠β相等的是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從左邊第一個格子開始向右數(shù),在每個小格子中都填入一個整數(shù),使得其中任意三個相鄰格子中所填整數(shù)之和都相等.

···

可求得 ,第個格子中的數(shù)為 ;

判斷:個格子中所填整數(shù)之和是否可能為若能,求出的值,若不可能,請說明理由;

如果,為前格子中的任意兩個數(shù),那么所有的和可以通過計算

得到,若span>,為前格子中的任意兩個數(shù),則所有的的和為

查看答案和解析>>

同步練習冊答案