分析 首先得出A,B,C三個點在數(shù)軸上表示的數(shù)分別為:6t-30,10+3t,18+3t,當P運動到點M左側(cè)時,由2PM-PN=2,得PM=2+(PN-PM)=2+MN=6,再利用①若P在M,N左邊;②若P在M,N之間;③若P在M,N右邊;分別求出即可.
解答 解:當A,B,C三個點在數(shù)軸上同時向數(shù)軸正方向運動t秒時,
A,B,C三個點在數(shù)軸上表示的數(shù)分別為:6t-30,10+3t,18+3t,
∵P,M,N分別為OA,OB,OC的中點,
∴P,M,N三個點在數(shù)軸上表示的數(shù)分別為:$\frac{6t-30}{2}$,$\frac{10+3t}{2}$,$\frac{18+3t}{2}$,
∴M在N左邊.
①若P在M,N左邊,則PM=$\frac{10+3t}{2}$-$\frac{6t-30}{2}$=20-1.5t,PN=$\frac{18+3t}{2}$-$\frac{6t-30}{2}$=24-1.5t.
∵2PM-PN=2,
∴2(20-1.5t)-(24-1.5t)=2,
∴t=$\frac{28}{3}$;
②若P在M,N之間,則PM=$\frac{6t-30}{2}$-$\frac{10+3t}{2}$=-20+1.5t,PN=$\frac{18+3t}{2}$-$\frac{6t-30}{2}$=24-1.5t.
∵2PM-PN=2,
∴2(-20+1.5t)-(24-1.5t)=2,
∴t=$\frac{44}{3}$;
③若P在M,N右邊,則PM=$\frac{6t-30}{2}$-$\frac{10+3t}{2}$=-20+1.5t,PN=$\frac{6t-30}{2}$-$\frac{18+3t}{2}$=-24+1.5t.
∵2PM-PN=2,
∴2(-20+1.5t)-(-24+1.5t)=2,
∴t=12,
但是此時PM=-20+1.5t<0,所以此種情況不成立,
∴t=$\frac{28}{3}$或$\frac{44}{3}$.
點評 此題主要考查了一元一次方程的應用以及數(shù)軸上點的位置關(guān)系,根據(jù)P點位置的不同得出等式方程求出是解題關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | A點在⊙O外 | B. | A點在⊙O上 | C. | A點在⊙O內(nèi) | D. | 不能確定 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2cm | B. | 3cm | C. | 5cm | D. | 8cm |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com