【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關(guān)系如圖2所示,等腰直角三角形AEF的斜邊EF過C點(diǎn),M為EF的中點(diǎn),則下列結(jié)論正確的是
A. 當(dāng)x=3時,EC<EM B. 當(dāng)y=9時,EC>EM
C. 當(dāng)x增大時,EC·CF的值增大。 D. 當(dāng)y增大時,BE·DF的值不變。
【答案】B
【解析】試題分析:由圖象可知,反比例函數(shù)圖象經(jīng)過(3,3),應(yīng)用待定系數(shù)法可得該反比例函數(shù)關(guān)系式為,因此,
當(dāng)x=3時,y=3,點(diǎn)C與點(diǎn)M重合,即EC=EM,選項(xiàng)A錯誤;
根據(jù)等腰直角三角形的性質(zhì),當(dāng)x=3時,y=3,點(diǎn)C與點(diǎn)M重合時,EM=, 當(dāng)y=9時, ,即EC=,所以,EC<EM,選項(xiàng)B錯誤;
根據(jù)等腰直角三角形的性質(zhì),EC= ,CF= , 即EC·CF=,為定值,所以不論x如何變化,EC·CF的值不變,選項(xiàng)C錯誤;
根據(jù)等腰直角三角形的性質(zhì),BE=x,DF=y,所以BE·DF= ,為定值,所以不論y如何變化,BE·DF的值不變,選項(xiàng)D正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在⊙O中,弦AC⊥弦BD,垂足為H,連接BC,過點(diǎn)D作DE⊥BC于點(diǎn)E,DE交AC于點(diǎn)F.
(1)如圖1,求證:BD平分∠ADF;
(2)如圖2,連接OC,若OC平分∠ACB,求證:AC=BC;
(3)如圖3,在(2)的條件下,連接AB,過點(diǎn)D作DN∥AC交⊙O于點(diǎn)N,若tan∠ADB=,AB=3,求DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( )
①面積相等的兩個直角三角形全等;
②對角線互相垂直的四邊形是正方形;
③將拋物線 向左平移4個單位,再向上平移1個單位可得到拋物線 ;
④兩圓的半徑R、r分別是方程x2-3x+2=0 的兩根,且圓心距d=3, 則兩圓外切.
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E點(diǎn)為DF上的點(diǎn),B為AC上的點(diǎn),∠1=∠2,∠C=∠D,那么DF∥AC,請完成它成立的理由
∵∠1=∠2 ( )
∠2=∠3 ,∠1=∠4( )
∴∠3=∠4( )
∴_______∥_______ ( )
∴∠C=∠ABD( )
∵∠C=∠D( )
∴∠D=∠ABD( )
∴DF∥AC( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進(jìn)了這種禮盒并且全部售完;2016年,這種禮盒的進(jìn)價比2014年下降了11元/盒,該商店用2400元購進(jìn)了與2014年相同數(shù)量的禮盒也全部售完,禮盒的售價均為60元/盒.
(1)2014年這種禮盒的進(jìn)價是多少元/盒?
(2)若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
紅星中學(xué)根據(jù)實(shí)際情況,計(jì)劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實(shí)踐活動,設(shè)租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
(2)若要保證租車費(fèi)用不超過1900元,求x的最大值;
(3)在(2)的條件下,若七年級師生共有195人,寫出所有可能的租車方案,并確定最省錢的租車方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com