【題目】下列圖形中,是中心對稱圖形但不是軸對稱圖形的是(

A.等邊三角形B.平行四邊形C.正五邊形D.

【答案】B

【解析】

中心對稱圖形:把一個圖形繞著某一點旋轉180°后,如果旋轉后的圖形能夠與原來的圖形重合,軸對稱圖形:一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形;據(jù)此判斷即可.

解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故A不符合題意;

B、平行四邊形不是軸對稱圖形,是中心對稱圖形,故B符合題意;

C、 正五邊形是軸對稱圖形,不是中心對稱圖形,故C不符合題意;

D、 圓是軸對稱圖形,也是中心對稱圖形,故D不符合題意;

故答案為B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于式子 --8)下列理解:可表示-8的相反數(shù);可表示-1-8的積;可表示-8的絕對值;運算結果是8.其中理解錯誤的個數(shù)有( )

A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學家楊輝(約13世紀)所著的《詳解九章算術》一書中,用如圖的三角形解釋二項式乘方(a+bn的展開式的各項系數(shù),此三角形稱為楊輝三角

根據(jù)楊輝三角請計算(a+b64的展開式中第三項的系數(shù)為(

A. 2016 B. 2017 C. 2018 D. 2019

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、D、C、F在一條直線上,且BD=FC,AB=EF.

(1)請你只添加一個條件(不再加輔助線),使△ABC≌△EFD,你添加的條件是 ;

(2)添加了條件后,證明△ABC≌△EFD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列是胡老師帶領學生,探究SSA是否能判定兩個三角形全等的過程,填空.

如圖:已知CD=CB,

△ABC△ADC中,

AC=_____,(公共邊)

CB=CD,(已知)

∠A=∠A,_______

△ABC△ADC滿足兩邊及一邊的對角分別相等,即滿足_____,

很顯然:△ABC_____△ADC,(填全等于不全等于”)

下結論:SSA_____(填不能)判定兩個三角形全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC經(jīng)過平移得到的△A′B′C′,△ABC中任意一點P(x1,y1)平移后的對應點為P′(x1+6,y1+4)。

(1)請在圖中作出△A′B′C′;(2)寫出點A′、B′、C′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1所示矩形ABCD中,BC=x,CD=y,yx滿足的反比例函數(shù)關系如圖2所示,等腰直角三角形AEF的斜邊EFC點,MEF的中點,則下列結論正確的是

A. x=3時,ECEM B. y=9時,ECEM

C. x增大時,EC·CF的值增大。 D. y增大時,BE·DF的值不變。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班為了解學生一學期做義工的時間情況,對全班50名學生進行調查,按做義工的時間(單位:小時),將學生分成五類: 類( ),類(),類(),類(),類(),繪制成尚不完整的條形統(tǒng)計圖如圖11.

根據(jù)以上信息,解答下列問題:

1 類學生有 人,補全條形統(tǒng)計圖;

2類學生人數(shù)占被調查總人數(shù)的 %;

(3)從該班做義工時間在的學生中任選2人,求這2人做義工時間都在 中的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,是直線上的點,

)如圖,過點,并截取,連接、、,判斷的形狀并證明.

)如圖是直線上的一點,直線、相交于點,且,求證

查看答案和解析>>

同步練習冊答案