分析 根據(jù)勾股定理求出四邊形各邊的長,進而可得出其周長.
解答 解:(1)∵由圖可知,AB=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,BC=$\sqrt{{1}^{2}+{2}^{2}}$=$\sqrt{5}$,CD=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,AD=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$,
∴四邊形ABCD的周長=AB+BC+CD+AD=2$\sqrt{5}$+2$\sqrt{13}$;
點評 本題考查的是勾股定理.熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{24}$ | B. | $\sqrt{0.3}$ | C. | $\sqrt{\frac{1}{3}}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com