精英家教網 > 初中數學 > 題目詳情

【題目】某校為了解“理化生實驗操作”考試的備考情況,隨機抽取了一部分九年級學生進行測試,測試結果分為“優(yōu)秀”、“良好”、“合格”、“不合格”四個等級,分別記為A、B、C、D.根據測試結果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次測試共隨機抽取了名學生.請根據數據信息補全條形統(tǒng)計圖;
(2)若該校九年級的600名學生全部參加本次測試,請估計測試成績等級在合格以上(包括合格)的學生約有多少人?

【答案】
(1)60;
(2)解:600× ×100%=580(人),

答:測試成績等級在合格以上(包括合格)的學生約有580人


【解析】解:(1)本次測試隨機抽取的學生總數:24÷40%=60, A等級人數:60﹣24﹣4﹣2=30,
如圖所示;

【考點精析】根據題目的已知條件,利用扇形統(tǒng)計圖和條形統(tǒng)計圖的相關知識可以得到問題的答案,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數目以及事物的變化情況;能清楚地表示出每個項目的具體數目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知⊙O為△ABC的外接圓,點E是△ABC的內心,AE的延長線交BC于點F,交⊙O于點D
(1)如圖1,求證:BD=ED;
(2)如圖2,AD為⊙O的直徑.若BC=6,sin∠BAC= ,求OE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c(b,c是常數,且c<0)與x軸分別交于點A、B(點A位于點B的左側),與y軸的負半軸交于點C,點A的坐標為(﹣1,0).

(1)b= , 點B的橫坐標為(上述結果均用含c的代數式表示);
(2)連接BC,過點A作直線AE∥BC,與拋物線y= x2+bx+c交于點E,點D是x軸上的一點,其坐標為(2,0).當C,D,E三點在同一直線上時,求拋物線的解析式;
(3)在(2)條件下,點P是x軸下方的拋物線上的一個動點,連接PB,PC,設所得△PBC的面積為S.
求S的取值范圍;
(4)若△PBC的面積S為整數,則這樣的△PBC共有個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°),若∠1=110°,則∠α=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關系,并說明理由;
(2)若AB=9,BC=6.求PC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,點A、B的坐標分別為(8,0)、(0,6).動點Q從點O、動點P從點A同時出發(fā),分別沿著OA方向、AB方向均以1個單位長度/秒的速度勻速運動,運動時間為t(秒)(0<t≤5).以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連接CD、QC.
(1)求當t為何值時,點Q與點D重合?
(2)設△QCD的面積為S,試求S與t之間的函數關系式,并求S的最大值;
(3)若⊙P與線段QC只有一個交點,請直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩個工程隊均參與某筑路工程,先由甲隊筑路60公里,再由乙隊完成剩下的筑路工程,已知乙隊筑路總公里數是甲隊筑路總公里數的 倍,甲隊比乙隊多筑路20天.
(1)求乙隊筑路的總公里數;
(2)若甲、乙兩隊平均每天筑路公里數之比為5:8,求乙隊平均每天筑路多少公里.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,水平放置的圓柱形排水管的截面半徑為10cm,截面中有水部分弓形高為5cm,則水面寬AB為cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB=4 ,點P在菱形內,若PB=PD=4,則∠PDC的度數為

查看答案和解析>>

同步練習冊答案