【題目】某企業(yè)生成一種節(jié)能產(chǎn)品,投放市場供不應求.若該企業(yè)每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于120萬元.已知這種產(chǎn)品的月產(chǎn)量x(套)與每套的售價y1(萬元)之間滿足關系式y(tǒng)1=190﹣2x.月產(chǎn)量x(套)與生成總成本y2(萬元)存在如圖所示的函數(shù)關系.
(1)直接寫出y2(2)與x之間的函數(shù)關系式;
(2)求月產(chǎn)量x的取值范圍;
(3)當月產(chǎn)量x(套)為多少時,這種產(chǎn)品的利潤W(萬元)最大?最大利潤是多少?
【答案】
(1)
解:設y2與x的函數(shù)關系式為y2=kx+b,
,得 ,
∴y2與x之間的函數(shù)關系式是y2=30x+500
(2)
解:由題意可得,
,
解得,25≤x≤35,
即月產(chǎn)量x的取值范圍是25≤x≤35
(3)
解:由題意可得,
W=x[190﹣2x﹣ ]=﹣2(x﹣40)2+2700,
∵25≤x≤35,
∴x=35時,W取得最大值,此時W=2650,
即當月產(chǎn)量x(套)為35套時,這種產(chǎn)品的利潤W(萬元)最大,最大利潤是2650萬元.
【解析】(1)根據(jù)題意可以設出y2與x之間的函數(shù)關系式,然后根據(jù)圖象中的數(shù)據(jù)即可求得函數(shù)的解析式;(2)根據(jù)題意可以列出相應的不等式組,從而可以求得x的取值范圍;(3)根據(jù)題意可以得到W與x函數(shù)關系式,然后化為頂點式,再根據(jù)x的取值范圍,即可求得W的最大值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AM⊥AN,AB平分∠MAN,過點B作BC⊥BA交AN于點C;動點E、D同時從A點出發(fā),其中動點E以2cm/s的速度沿射線AN方向運動,動點D以1cm/s的速度在直線AM上運動;已知AC=6cm,設動點D,E的運動時間為ts.
(1)試求∠ACB的度數(shù);
(2)若:=2:3,試求動點D,E的運動時間t的值;
(3)試問當動點D,E在運動過程中,是否存在某個時間t,使得△ADB≌△CEB?若存在,請求出時間t的值;若不存在,請說出理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中BD、CD平分∠ABC、∠ACB,過D作直線平行于BC,交AB、AC于E、F,當∠A的位置及大小變化時,線段EF和BE+CF的大小關系( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)某工廠計劃在規(guī)定時間內生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).
(2)為了提前完成生產(chǎn)任務,工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務,求原計劃安排的工人人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,∠DAB被對角線AC平分,且AC2=ABAD.我們稱該四邊形為“可分四邊形”,∠DAB稱為“可分角”.
(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D在△ABC的內部且DB=DC,點E,F(xiàn)在△ABC的外部,F(xiàn)B=FA,EA=EC,∠FBA=∠DBC=∠ECA.
(1)①填空:△ACE∽∽;
(2)求證:△CDE∽△CBA;
(3)求證:△FBD≌△EDC;
(4)若點D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】服裝廠為了估計某校七年級學生穿每種尺碼校服的人數(shù),從該校七年級學生中隨機抽取了50名學生的身高數(shù)據(jù)(單位:cm),繪制成了下面的頻數(shù)分布表和頻數(shù)分布直方圖.
(1)表中m=________,n=________;
(2)身高x滿足160≤x<170的校服記為L號,則需要訂購L號校服的學生占被調查學生的百分數(shù)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com