【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級(jí)畢業(yè)生統(tǒng)一參加中考實(shí)驗(yàn)操作考試,根據(jù)今年的實(shí)際情況,中考實(shí)驗(yàn)操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機(jī)抽取其中道進(jìn)行考試.小明和小麗是某校九年級(jí)學(xué)生,需參加實(shí)驗(yàn)考試.
(1)小明抽到化學(xué)實(shí)驗(yàn)的概率為 ;
(2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABP的斜邊AB=2,點(diǎn)M、N在斜邊AB上.若△PMN是等腰三角形且底角正切值為2,則MN=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+c與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式;
(2)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)P在第二象限內(nèi),過動(dòng)點(diǎn)P作PE⊥x軸于點(diǎn)E,交線段AC于點(diǎn)D.
①如圖1,過D作DF⊥y軸于點(diǎn)F,交拋物線于M,N兩點(diǎn)(點(diǎn)M位于點(diǎn)N的左側(cè)),連接EF,當(dāng)線段EF的長度最短時(shí),求點(diǎn)P,M,N的坐標(biāo);
②如圖2,連接CD,若以C,P,D為頂點(diǎn)的三角形與△ADE相似,求△CPD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)課本情境:如圖,已知矩形AOBC,AB=6cm,BC=16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng),出發(fā) 時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;
(2)逆向發(fā)散:當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P,Q兩點(diǎn)的距離為多少?當(dāng)運(yùn)動(dòng)時(shí)間為4s時(shí),P,Q兩點(diǎn)的距離為多少?
(3)拓展應(yīng)用:若點(diǎn)P沿著AO→OC→CB移動(dòng),點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)B停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),求經(jīng)過多長時(shí)間△POQ的面積為12cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn).得到,連接,交于點(diǎn).
(1)求證:;
(2)用表示的度數(shù);
(3)若使四邊形是菱形,求的度數(shù),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的頂點(diǎn)A(1,1),B(3,1),規(guī)定把△ABC“先沿x軸翻折,再向左平移1個(gè)單位”為一次變換,這樣連續(xù)經(jīng)過2020次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為( )
A.(-2 020,)B.(-2 019,)
C.(-2 018,)D.(-2 017,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于,,與軸交于點(diǎn).若點(diǎn),同時(shí)從點(diǎn)出發(fā),都以每秒個(gè)單位長度的速度分別沿,邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)直接寫出二次函數(shù)的解析式;
(2)當(dāng),運(yùn)動(dòng)到秒時(shí),將△APQ沿翻折,若點(diǎn)恰好落在拋物線上點(diǎn)處,求出點(diǎn)坐標(biāo);
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)停止運(yùn)動(dòng),這時(shí),在軸上是否存在點(diǎn),使得以,,為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD中,AC⊥BD于點(diǎn)O,AO=CO=4,BO=DO=3,點(diǎn)P為線段AC上的一個(gè)動(dòng)點(diǎn).過點(diǎn)P分別作PM⊥AD于點(diǎn)M,作PN⊥DC于點(diǎn)N. 連接PB,在點(diǎn)P運(yùn)動(dòng)過程中,PM+PN+PB的最小值等于_________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,拋物線與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,直線y=-x-4經(jīng)過A,C兩點(diǎn),
(1)求拋物線的表達(dá)式;
(2)如果點(diǎn)P,Q在拋物線上(P點(diǎn)在對(duì)稱軸左邊),且PQ∥AO,PQ=AO,求P,Q的坐標(biāo);
(3)動(dòng)點(diǎn)M在直線y=-x-4上,且以C,O,M為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com