【題目】為了考查學(xué)生的綜合素質(zhì),某市決定:九年級(jí)畢業(yè)生統(tǒng)一參加中考實(shí)驗(yàn)操作考試,根據(jù)今年的實(shí)際情況,中考實(shí)驗(yàn)操作考試科目為:(物理)、(化學(xué))、(生物),每科試題各為道,考生隨機(jī)抽取其中道進(jìn)行考試.小明和小麗是某校九年級(jí)學(xué)生,需參加實(shí)驗(yàn)考試.

1)小明抽到化學(xué)實(shí)驗(yàn)的概率為

2)若只從考試科目考慮,小明和小麗抽到不同科目的概率為多少?

【答案】12

【解析】

1)直接利用概率公式計(jì)算可得;
2)畫樹狀圖列出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式求解可得.

解:(1)明抽到化學(xué)實(shí)驗(yàn)的概率為,
故答案為:

2)畫樹狀圖如下:(通過列舉、列表等方法說明均可)

由樹狀圖得,共有種等可能的結(jié)果,其中滿足題意的結(jié)果有種,

(不同科目)=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABP的斜邊AB=2,點(diǎn)M、N在斜邊AB上.若PMN是等腰三角形且底角正切值為2,則MN_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+cx軸交于點(diǎn)A(﹣40),與y軸交于點(diǎn)C,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A,C

1)求拋物線的解析式;

2)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)P在第二象限內(nèi),過動(dòng)點(diǎn)PPEx軸于點(diǎn)E,交線段AC于點(diǎn)D

如圖1,過DDFy軸于點(diǎn)F,交拋物線于M,N兩點(diǎn)(點(diǎn)M位于點(diǎn)N的左側(cè)),連接EF,當(dāng)線段EF的長度最短時(shí),求點(diǎn)PM,N的坐標(biāo);

如圖2,連接CD,若以C,P,D為頂點(diǎn)的三角形與△ADE相似,求△CPD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)課本情境:如圖,已知矩形AOBC,AB6cmBC16cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向點(diǎn)O運(yùn)動(dòng),直到點(diǎn)O為止;動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),與點(diǎn)P同時(shí)結(jié)束運(yùn)動(dòng),出發(fā)   時(shí),點(diǎn)P和點(diǎn)Q之間的距離是10cm;

2)逆向發(fā)散:當(dāng)運(yùn)動(dòng)時(shí)間為2s時(shí),P,Q兩點(diǎn)的距離為多少?當(dāng)運(yùn)動(dòng)時(shí)間為4s時(shí),PQ兩點(diǎn)的距離為多少?

3)拓展應(yīng)用:若點(diǎn)P沿著AO→OC→CB移動(dòng),點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)B停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),求經(jīng)過多長時(shí)間△POQ的面積為12cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn).得到,連接,交于點(diǎn)

1)求證:

2)用表示的度數(shù);

3)若使四邊形是菱形,求的度數(shù),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的頂點(diǎn)A(1,1)B(3,1),規(guī)定把△ABC“先沿x軸翻折,再向左平移1個(gè)單位”為一次變換,這樣連續(xù)經(jīng)過2020次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為(

A.(2 020,)B.(2 019,)

C.(2 018)D.(2 017,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于,,與軸交于點(diǎn).若點(diǎn),同時(shí)從點(diǎn)出發(fā),都以每秒個(gè)單位長度的速度分別沿,邊運(yùn)動(dòng),其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).

1)直接寫出二次函數(shù)的解析式;

2)當(dāng)運(yùn)動(dòng)到秒時(shí),將△APQ沿翻折,若點(diǎn)恰好落在拋物線上點(diǎn)處,求出點(diǎn)坐標(biāo);

3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn)停止運(yùn)動(dòng),這時(shí),在軸上是否存在點(diǎn),使得以,為頂點(diǎn)的三角形為等腰三角形?若存在,請(qǐng)直接寫出 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四邊形ABCD中,ACBD于點(diǎn)O,AO=CO=4,BO=DO=3,點(diǎn)P為線段AC上的一個(gè)動(dòng)點(diǎn).過點(diǎn)P分別作PMAD于點(diǎn)M,作PNDC于點(diǎn)N. 連接PB,在點(diǎn)P運(yùn)動(dòng)過程中,PM+PN+PB的最小值等于_________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,拋物線x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,直線y=-x-4經(jīng)過A,C兩點(diǎn),

1)求拋物線的表達(dá)式;

2)如果點(diǎn)PQ在拋物線上(P點(diǎn)在對(duì)稱軸左邊),且PQ∥AO,PQ=AO,求PQ的坐標(biāo);

3)動(dòng)點(diǎn)M在直線y=-x-4上,且以C,O,M為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案