【題目】如圖,小宋作出了邊長為2的第一個正方形A1B1C1D1,算出了它的面積.然后分別取正方形A1B1C1D1四邊的中點A2、B2C2、D2作出了第二個正方形A2B2C2D2,算出了它的面積.用同樣的方法,作出了第三個正方形A3B3C3D3,算出了它的面積,由此可得,第六個正方形A6B6C6D6的面積是(  )

A.B.C.D.

【答案】C

【解析】

依次求出正方形A1B1C1D1的面積為4,正方形A2B2C2D2的面積為;正方形A3B3C3D3的面積為;正方形A4B4C4D4的面積為,即可得到規(guī)律進行求解.

正方形A1B1C1D1的面積為4;

順次連接正方形A1B1C1D1中點得正方形A2B2C2D2,則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即

順次連接正方形A2B2C2D2得正方形A3B3C3D3,則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即;

順次連接正方形A3B3C3D3中點得正方形A4B4C4D4,則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半,即

第六個正方形A6B6C6D6的面積是5

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.擲一枚質地均勻的正方體骰子,骰子停止轉動后,5點朝上是必然事件

B.審查書稿中有哪些學科性錯誤適合用抽樣調查法

C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績較穩(wěn)定

D.擲兩枚質地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ACD中,∠ACD90°,ACb,CDa,ADc,點BCD的延長線上

(1)求證:關于x的一元二次方程必有實數(shù)根

(2)當b3,CB5時.將線段AD繞點D順時針旋轉90°,得到線段DE,連接BE,則當a的值為多少時,線段BE的長最短,最短長度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合探究

已知拋物線yax2+x+4的對稱軸是直線x3,與x軸相交于AB兩點(點B在點A右側),與y軸交于點C

1)求拋物線的解析式和A,B兩點的坐標;

2)如圖1,若點P是拋物線上B、C兩點之間的一個動點(不與BC重合),是否存在點P,使四邊形PBOC的面積最大?若存在,求點P的坐標及四邊形PBOC面積的最大值;若不存在,請說明理由;

3)如圖2,若點M是拋物線上任意一點,過點My軸的平行線,交直線BC于點N,當MN3時,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某化妝品店老板到廠家購A、B兩種品牌店化妝品,若購進品牌的化妝品5套,品牌的化妝品6套,需要950元;若購進品牌的化妝品3套,品牌的化妝品2套,需要450.

(1)、兩種品牌的化妝品每套進價分別為多少元?

(2)若銷售1品牌的化妝品可獲利30元,銷售1B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進品牌化妝品的數(shù)量比購進品牌的化妝品數(shù)量的2倍還多4套,且品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點AB分別在x軸、y軸上,線段OA、OB的長(OAOB)是一元二次方程x218x+720組的解.點C是直線y2x與直線AB的交點,點D在線段OC上,OD2

1)求點C的坐標;

2)求直線AD的解析式;

3P是直線AD上的點,在平面內是否存在點Q,使以O、A、P、Q為頂點的四邊形是菱形?若存在,則求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一水果店,從批發(fā)市場按4千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質,平均每天有50千克變質丟棄,且每存放一天需要各種費用300元,據(jù)預測,每天每千克價格上漲元.

x天后每千克蘋果的價格為p元,寫出px的函數(shù)關系式;

若存放x天后將蘋果一次性售出,設銷售總金額為y元,求出yx的函數(shù)關系式;

該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1ABC中,∠B30°,點DBA的延長線上,點EBC邊上,連接DE,交AC于點F.若∠EFC60°,DE2AC,求的值.某學習小組的同學經過思考,交流了自己的想法:

小明:通過觀察和度量,發(fā)現(xiàn)∠C與∠D存在某種數(shù)量關系;

小強:通過構造三角形,證明三角形相似,進而可以求得的值.

老師:如圖2,將原題中DBA的延長線上,點EBC邊上改為DAB邊上,點EBC的延長線上,添加條件“BC5,EC4,其它條件不變,可求出BED的面積.

請回答:

1)用等式表示∠C、∠D的數(shù)量關系并證明;

2)求的值;

3BDE的面積為   (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小哲的姑媽經營一家花店,隨著越來越多的人喜愛“多肉植物”,姑媽也打算銷售“多肉植物”.小哲幫助姑媽針對某種“多肉植物”做了市場調查后,繪制了以下兩張圖表:

(1)如果在三月份出售這種植物,單株獲利多少元;

(2)請你運用所學知識,幫助姑媽求出在哪個月銷售這種多肉植物,單株獲利最大?(提示:單株獲利=單株售價﹣單株成本)

查看答案和解析>>

同步練習冊答案