【題目】如圖,小宋作出了邊長為2的第一個正方形A1B1C1D1,算出了它的面積.然后分別取正方形A1B1C1D1四邊的中點A2、B2、C2、D2作出了第二個正方形A2B2C2D2,算出了它的面積.用同樣的方法,作出了第三個正方形A3B3C3D3,算出了它的面積…,由此可得,第六個正方形A6B6C6D6的面積是( )
A.B.C.D.
【答案】C
【解析】
依次求出正方形A1B1C1D1的面積為4,正方形A2B2C2D2的面積為4×;正方形A3B3C3D3的面積為4×;正方形A4B4C4D4的面積為4×,即可得到規(guī)律進行求解.
正方形A1B1C1D1的面積為4;
順次連接正方形A1B1C1D1中點得正方形A2B2C2D2,則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即4×;
順次連接正方形A2B2C2D2得正方形A3B3C3D3,則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即4×;
順次連接正方形A3B3C3D3中點得正方形A4B4C4D4,則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半,即4×.
…
第六個正方形A6B6C6D6的面積是4×()5,
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.擲一枚質地均勻的正方體骰子,骰子停止轉動后,5點朝上是必然事件
B.審查書稿中有哪些學科性錯誤適合用抽樣調查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績的平均數(shù)相同,方差分別是=0.4,=0.6,則甲的射擊成績較穩(wěn)定
D.擲兩枚質地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ACD中,∠ACD=90°,AC=b,CD=a,AD=c,點B在CD的延長線上
(1)求證:關于x的一元二次方程必有實數(shù)根
(2)當b=3,CB=5時.將線段AD繞點D順時針旋轉90°,得到線段DE,連接BE,則當a的值為多少時,線段BE的長最短,最短長度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合探究
已知拋物線y=ax2+x+4的對稱軸是直線x=3,與x軸相交于A,B兩點(點B在點A右側),與y軸交于點C.
(1)求拋物線的解析式和A,B兩點的坐標;
(2)如圖1,若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),是否存在點P,使四邊形PBOC的面積最大?若存在,求點P的坐標及四邊形PBOC面積的最大值;若不存在,請說明理由;
(3)如圖2,若點M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當MN=3時,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某化妝品店老板到廠家購A、B兩種品牌店化妝品,若購進品牌的化妝品5套,品牌的化妝品6套,需要950元;若購進品牌的化妝品3套,品牌的化妝品2套,需要450元.
(1)求、兩種品牌的化妝品每套進價分別為多少元?
(2)若銷售1套品牌的化妝品可獲利30元,銷售1套B品牌的化妝品可獲利20元,根據(jù)市場需求,化妝品店老板決定,購進品牌化妝品的數(shù)量比購進品牌的化妝品數(shù)量的2倍還多4套,且品牌化妝品最多可購進40套,這樣化妝品全部售出后,可使總的獲利不少于1200元,問有幾種進貨方案?如何進貨?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B分別在x軸、y軸上,線段OA、OB的長(OA<OB)是一元二次方程x2﹣18x+72=0組的解.點C是直線y=2x與直線AB的交點,點D在線段OC上,OD=2.
(1)求點C的坐標;
(2)求直線AD的解析式;
(3)P是直線AD上的點,在平面內是否存在點Q,使以O、A、P、Q為頂點的四邊形是菱形?若存在,則求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一水果店,從批發(fā)市場按4元千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質,平均每天有50千克變質丟棄,且每存放一天需要各種費用300元,據(jù)預測,每天每千克價格上漲元.
設x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關系式;
若存放x天后將蘋果一次性售出,設銷售總金額為y元,求出y與x的函數(shù)關系式;
該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,∠B=30°,點D在BA的延長線上,點E在BC邊上,連接DE,交AC于點F.若∠EFC=60°,DE=2AC,求的值.某學習小組的同學經過思考,交流了自己的想法:
小明:“通過觀察和度量,發(fā)現(xiàn)∠C與∠D存在某種數(shù)量關系”;
小強:“通過構造三角形,證明三角形相似,進而可以求得的值.
老師:如圖2,將原題中“點D在BA的延長線上,點E在BC邊上”改為“點D在AB邊上,點E在BC的延長線上”,添加條件“BC=5,EC=4”,其它條件不變,可求出△BED的面積.
請回答:
(1)用等式表示∠C、∠D的數(shù)量關系并證明;
(2)求的值;
(3)△BDE的面積為 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小哲的姑媽經營一家花店,隨著越來越多的人喜愛“多肉植物”,姑媽也打算銷售“多肉植物”.小哲幫助姑媽針對某種“多肉植物”做了市場調查后,繪制了以下兩張圖表:
(1)如果在三月份出售這種植物,單株獲利多少元;
(2)請你運用所學知識,幫助姑媽求出在哪個月銷售這種多肉植物,單株獲利最大?(提示:單株獲利=單株售價﹣單株成本)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com