【題目】如圖,OABC是平行四邊形,對(duì)角線(xiàn)OB在軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線(xiàn)y= 和y= 的一支上,分別過(guò)點(diǎn)A、C作x軸的垂線(xiàn),垂足分別為M和N,則有以下的結(jié)論:
= ;
②陰影部分面積是 (k1+k2);
③當(dāng)∠AOC=90°時(shí),|k1|=|k2|;
④若OABC是菱形,則兩雙曲線(xiàn)既關(guān)于x軸對(duì)稱(chēng),也關(guān)于y軸對(duì)稱(chēng).

其中正確的結(jié)論是(把所有正確的結(jié)論的序號(hào)都填上).

【答案】①④
【解析】解:作AE⊥y軸于E,CF⊥y軸于F,如圖,

∵四邊形OABC是平行四邊形,
∴SAOB=SCOB ,
∴AE=CF,
∴OM=ON,
∵SAOM= |k1|= OMAM,SCON= |k2|= ONCN,
= ,故①正確;
∵SAOM= |k1|,SCON= |k2|,
∴S陰影部分=SAOM+SCON= (|k1|+|k2|),
而k1>0,k2<0,
∴S陰影部分= (k1﹣k2),故②錯(cuò)誤;
當(dāng)∠AOC=90°,
∴四邊形OABC是矩形,
∴不能確定OA與OC相等,
而OM=ON,
∴不能判斷△AOM≌△CNO,
∴不能判斷AM=CN,
∴不能確定|k1|=|k2|,故③錯(cuò)誤;
若OABC是菱形,則OA=OC,
而OM=ON,
∴Rt△AOM≌Rt△CNO,
∴AM=CN,
∴|k1|=|k2|,
∴k1=﹣k2 ,
∴兩雙曲線(xiàn)既關(guān)于x軸對(duì)稱(chēng),也關(guān)于y軸對(duì)稱(chēng),故④正確.
故答案為:①④.
作AE⊥y軸于點(diǎn)E,CF⊥y軸于點(diǎn)F,根據(jù)平行四邊形的性質(zhì)得SAOB=SCOB , 利用三角形面積公式得到AE=CF,則有OM=ON,再利用反比例函數(shù)k的幾何意義和三角形面積公式得到SAOM= |k1|= OMAM,SCON= |k2|= ONCN,所以有 = ;由SAOM= |k1|,SCON= |k2|,得到S陰影部分=SAOM+SCON= (|k1|+|k2|)= (k1﹣k2);當(dāng)∠AOC=90°,得到四邊形OABC是矩形,由于不能確定OA與OC相等,則不能判斷△AOM≌△CNO,所以不能判斷AM=CN,則不能確定|k1|=|k2|;若OABC是菱形,根據(jù)菱形的性質(zhì)得OA=OC,可判斷Rt△AOM≌Rt△CNO,則AM=CN,所以|k1|=|k2|,即k1=﹣k2 , 根據(jù)反比例函數(shù)的性質(zhì)得兩雙曲線(xiàn)既關(guān)于x軸對(duì)稱(chēng),也關(guān)于y軸對(duì)稱(chēng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解交通擁堵,減少環(huán)境污染,倡導(dǎo)低碳出行,構(gòu)建慢行交通體系,南潯中心城區(qū)正在努力建設(shè)和完善公共自行車(chē)服務(wù)系統(tǒng).圖1所示的是一輛自行車(chē)的實(shí)物圖.圖2是自行車(chē)的車(chē)架示意圖.CE=30cm,DE=24cm,AD=26cm,DE⊥AC于點(diǎn)E,座桿CF的長(zhǎng)為20cm,點(diǎn)A、E、C、F在同一直線(xiàn)上,且∠CAB=75°.

(1)求車(chē)架中AE的長(zhǎng);
(2)求車(chē)座點(diǎn)F到車(chē)架AB的距離.(結(jié)果精確到1cm,參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲轉(zhuǎn)盤(pán)被分成 3 個(gè)面積相等的扇形,乙轉(zhuǎn)盤(pán)被分成4個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字.同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,設(shè)甲轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線(xiàn)上時(shí),重轉(zhuǎn),直到指針指向一個(gè)區(qū)域?yàn)橹梗?
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表格的方法,求點(diǎn)(x,y)落在第二象限內(nèi)的概率;
(2)直接寫(xiě)出點(diǎn)(x,y)落在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某中學(xué)九年級(jí)學(xué)生中考體育成績(jī)情況,現(xiàn)從中抽取部分學(xué)生的體育成績(jī)進(jìn)行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如圖所示.
根據(jù)上面提供的信息,回答下列問(wèn)題:
(1)本次抽查了多少名學(xué)生的體育成績(jī);
(2)補(bǔ)全圖9.1,求圖9.2中D分?jǐn)?shù)段所占的百分比;
(3)已知該校九年級(jí)共有900名學(xué)生,請(qǐng)估計(jì)該校九年級(jí)學(xué)生體育成績(jī)達(dá)到40分以上(含40分)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD中,E為對(duì)角線(xiàn)BD上一點(diǎn),過(guò)E點(diǎn)作EF⊥BD交BC于F,連接DF,G為DF中點(diǎn),連接EG,CG.
(1)求證:EG=CG;EG⊥CG.
(2)將圖①中△BEF繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)45°,如圖②所示,取DF中點(diǎn)G,連接EG,CG.問(wèn)(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x1 , x2是關(guān)于x的一元二次方程x2﹣mx+m﹣2=0的兩個(gè)實(shí)數(shù)根,是否存在實(shí)數(shù)m使 + =0成立?則正確的結(jié)論是(
A.m=0時(shí)成立
B.m=2時(shí)成立
C.m=0或2時(shí)成立
D.不存在

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定直線(xiàn)l:y=kx,拋物線(xiàn)C:y=ax2+bx+1.

(1)當(dāng)b=1時(shí),l與C相交于A,B兩點(diǎn),其中A為C的頂點(diǎn),B與A關(guān)于原點(diǎn)對(duì)稱(chēng),求a的值;
(2)若把直線(xiàn)l向上平移k2+1個(gè)單位長(zhǎng)度得到直線(xiàn)l′,則無(wú)論非零實(shí)數(shù)k取何值,直線(xiàn)l′與拋物線(xiàn)C都只有一個(gè)交點(diǎn).
①求此拋物線(xiàn)的解析式;
②若P是此拋物線(xiàn)上任一點(diǎn),過(guò)P作PQ∥y軸且與直線(xiàn)y=2交于Q點(diǎn),O為原點(diǎn).求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D在邊AB上,線(xiàn)段DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),端點(diǎn)C恰巧落在邊AC上的點(diǎn)E處.如果 =m, =n.那么m與n滿(mǎn)足的關(guān)系式是:m=(用含n的代數(shù)式表示m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:①該拋物線(xiàn)的對(duì)稱(chēng)軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c+2=0無(wú)實(shí)數(shù)根;③a﹣b+c≥0; 的最小值為3.其中正確的是(
A.①②③
B.②③④
C.①③④
D.①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案