【題目】分解因式

(1);(2)

(3)(y-2x)(x+2y);(4)(ab+1)(ab-1).

【答案】(1)aa-1)2;(2)(xy)(a+4)(a-4);(3)-2x2-3xy+2y2;(4)a2-b2+2b-1

【解析】1)(2)先提取公因式x,再根據(jù)平方差公式進(jìn)行二次分解;(3)利用多項式乘以多項式,(4)運(yùn)用公式分解公因式即可得出結(jié)果.

(1)原式= a(a22a+1) = aa-12

(2)原式= a2(xy)-16(xy) =(xy)(a216) =(xy)(a+4)a-4

(3)原式=xy+2y2-2x2-4xy=-2x2-3xy+2y2

(4)原式=a2-(b-12=a2-(b2-2b+1=a2-b2+2b-1

“點(diǎn)睛”本題考查了提取公因式,公式法分解因式,提取公因式后利用平方差公式進(jìn)行二次分解,因式分解的口訣:首先提取公因式,然后考慮套用公式,兩項聯(lián)想平方差,兩項異號不混淆,三項要用完全平方公式,分解完畢不大意,檢查是否分徹底.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=3x2向上平移3個單位,再向右平移2個單位,那么得到的拋物線的解析式為( )
A.y=3(x+2)2+3
B.y=3(x﹣2)2+3
C.y=3(x+2)2﹣3
D.y=3(x﹣2)2﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出“對頂角相等”的逆命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)快、慢兩車分別從相距480千米路程的甲、乙兩地同時出發(fā),勻速行駛,先相向而行,途中慢車因故停留1小時,然后以原速繼續(xù)向甲地行駛,到達(dá)甲地后停止行駛;快車到達(dá)乙地后,立即按原路原速返回甲地(快車掉頭的時間忽略不計),快、慢兩車距乙地的路程(千米)與所用時間(小時)之間的函數(shù)圖象如圖,請結(jié)合圖象信息解答下列問題:

(1)求慢車的行駛速度和的值;

(2)求快車與慢車第一次相遇時,距離甲地的路程是多少千米?

(3)求兩車出發(fā)后幾小時相距的路程為千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用四舍五入法得到的近似數(shù)是3.006萬,這個數(shù)精確到_______位;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①所示,直線L:y=m(x+10)與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn).

(1)當(dāng)OA=OB時,試確定直線L的解析式;

(2)在(1)的條件下,如圖②所示,設(shè)Q為AB延長線上一點(diǎn),作直線OQ,過A、B兩點(diǎn)分別作AMOQ于M,BNOQ于N,若AM=8,BN=6,求MN的長;

(3)當(dāng)m取不同的值時,點(diǎn)B在y軸正半軸上運(yùn)動,分別以O(shè)B、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角OBF和等腰直角ABE,連EF交y軸于P點(diǎn),如圖③.

問:當(dāng)點(diǎn)B在y軸正半軸上運(yùn)動時,試猜想PB的長是否為定值?若是,請求出其值;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表記錄了甲、乙、丙、丁四名跳高運(yùn)動員最近幾次選拔賽成績的平均數(shù)與方差:

平均數(shù)(cm)

185

180

185

180

方差

3. 6

3.6

7.4

8.1

根據(jù)表中數(shù)據(jù),要從中選擇一名成績好且發(fā)揮穩(wěn)定的運(yùn)動員參加比賽,應(yīng)該選擇【

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場欲購進(jìn)一種商品,當(dāng)購進(jìn)這種商品至少為10kg,但不超過30kg時,成本y(元/kg)與進(jìn)貨量x(kg)的函數(shù)關(guān)系如圖所示.

(1)求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.

(2)若該商場購進(jìn)這種商品的成本為9.6元/kg,則購進(jìn)此商品多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個長為19cm,寬為18cm的長方形,如果把這個長方形分成若干個正方形要求正方形的邊長為正整數(shù),那么該長方形最少可分成正方形的個數(shù)( 。

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習(xí)冊答案