【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點,與軸交于點,連接.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點為拋物線對稱軸上一點,拋物線上是否存在點,使得以,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點的坐標(biāo);若不存在,請說明理由;
(3)點是直線上方拋物線上的點,若,求出點的到軸的距離.
【答案】(1)(2)存在,或或(3)
【解析】
(1)將點A(-1,0),B(3,0)代入y=ax2+bx+2即可;
(2)由題得,,,設(shè),,按照分類討論的方法得到符合條件的值;
(3)過點作平行于軸交的延長線與點,過點作垂直軸于,先利用平行線的性質(zhì)、等量代換等求證、,利用勾股定理求出H坐標(biāo),寫出直線CP的函數(shù)表達(dá)式,求出一次函數(shù)與二次函數(shù)的交點P的坐標(biāo),即可得到答案.
(1)解:(1)將點,代入,
可得,,
∴;
(2)存在點使得以,,,為頂點的四邊形是平行四邊形,
由題得,,,設(shè),,
①四邊形是平行四邊形時,
,∴,
∴;
②四邊形時平行四邊形時,
,∴,
∴;
③四邊形時平行四邊形時,
,∴,
∴;
綜上所述:或或;
(2)過點作平行于軸交的延長線與點.
∵
∴
又
∴
∴
又
∴
故可設(shè),即
過點作垂直軸于
在中,則
解得
∴
設(shè)直線的解析式為
得得,
∴
故
解得(舍去),
即點到軸的距離是
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團隊有研發(fā)、管理和操作三個小組,各組的日工資和人數(shù)如下表所示.現(xiàn)從管理組分別抽調(diào)1人到研發(fā)組和操作組,調(diào)整后與調(diào)整前相比,下列說法中不正確的是( )
操作組 | 管理組 | 研發(fā)組 | |
日工資(元/人) | 260 | 280 | 300 |
人數(shù)(人) | 4 | 4 | 4 |
A.團隊平均日工資不變B.團隊日工資的方差不變
C.團隊日工資的中位數(shù)不變D.團隊日工資的極差不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當(dāng)x>0時,y>0;②若a=-1,則b=3;③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;④點C關(guān)于拋物線對稱軸的對稱點為E,點G、F分別在x軸和y軸上,當(dāng)m=2時,四邊形EDGF周長的最小值為,其中,判斷正確的序號是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,AD=2,對角線AC,BD交于點O,E為對角線AC上一點.
(1)求證:△OBC是等邊三角形;
(2)連結(jié)BE,當(dāng)BE=時,求線段AE的長;
(3)在BC邊上取點F,設(shè)P,Q分別為線段AE,BF的中點,連結(jié)EF,PQ.若EF=2,求PQ的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺機床同時加工直徑為的同種規(guī)格零件,為了檢查兩臺機床加工零件的穩(wěn)定性,質(zhì)檢員從兩臺機床的產(chǎn)品中各抽取件進行檢測,結(jié)果如下(單位:):
甲 | |||||
乙 |
(1)分別求出這兩臺機床所加工零件直徑的平均數(shù)和方差;
(2)根據(jù)所學(xué)的統(tǒng)計知識,你認(rèn)為哪一臺機床生產(chǎn)零件的穩(wěn)定性更好一些,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板按如圖1所示放置,其中點在邊上,,斜邊.將三角板繞點順時針旋轉(zhuǎn),記旋轉(zhuǎn)角為.
(1)在圖1中,設(shè)與的交點為,則線段AF的長為 ;
(2)當(dāng)時,三角板旋轉(zhuǎn)到,的位置(如圖2所示),連接,請判斷四邊形的形狀,并證明你的結(jié)論;
(3)當(dāng)三角板旋轉(zhuǎn)到的位置(如圖3所示)時,此時點恰好在的延長線上.①求旋轉(zhuǎn)角的度數(shù);②求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,軸,,拋物線的頂點為,與軸交點為.
(1)設(shè)為中點,直接寫出直線的函數(shù)表達(dá)式:______________.
(2)求點最高時的坐標(biāo);
(3)拋物線有可能經(jīng)過點嗎?請說明理由;
(4)在的位置隨的值變化而變化的過程中,求點在內(nèi)部所經(jīng)過路線的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】評價組對某區(qū)九年級教師的試卷講評課的學(xué)生參與度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名同學(xué)的參與情況,繪制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名同學(xué);
(2)請將條形統(tǒng)計圖補充完整;
(3)如果全區(qū)有6000名九年級學(xué)生,那么在試卷評講課中,“獨立思考”的約有多少人?
(4)根據(jù)統(tǒng)計反映的情況,請你對該區(qū)的九年級同學(xué)提出一條對待試卷講評課的建議.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com