【題目】評價(jià)組對某區(qū)九年級教師的試卷講評課的學(xué)生參與度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價(jià)組隨機(jī)抽取了若干名同學(xué)的參與情況,繪制成如圖所示的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價(jià)中,一共抽查了 名同學(xué);
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果全區(qū)有6000名九年級學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的約有多少人?
(4)根據(jù)統(tǒng)計(jì)反映的情況,請你對該區(qū)的九年級同學(xué)提出一條對待試卷講評課的建議.
【答案】(1)560;(2)見解析;(3)1800人;(4)見解析
【解析】
(1)根據(jù)專注聽講的人數(shù)是224人,所占的比例是40%,即可求得抽查的總?cè)藬?shù);
(2)利用總?cè)藬?shù)減去其他各組的人數(shù),即可求得講解題目的人數(shù),從而作出頻數(shù)分布直方圖;
(3)利用6000乘以對應(yīng)的比例即可;
(4)從有效提高學(xué)習(xí)效率方面提出意見或建議.
(1)調(diào)查的總?cè)藬?shù)是:224÷40%=560(人),
故答案是:560;
(2)“講解題目”的人數(shù)是:560﹣84﹣168﹣224=84(人).
(3)6000×=1800(人),
答:在試卷評講課中,“獨(dú)立思考”的初三學(xué)生約有1800人.
(4)試卷講評課中,提高學(xué)生的學(xué)習(xí)主動(dòng)性,提高學(xué)生主動(dòng)質(zhì)疑的能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過C作CG∥AE交BA的延長線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若sinG=0.6,CF=4,求GA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與軸交于,兩點(diǎn),與軸交于點(diǎn),連接.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)為拋物線對稱軸上一點(diǎn),拋物線上是否存在點(diǎn),使得以,,,為頂點(diǎn)的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)是直線上方拋物線上的點(diǎn),若,求出點(diǎn)的到軸的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將圖中的型(正方形)、型(菱形)、型(等腰直角三角形)紙片分別放在個(gè)盒子中,盒子的形狀、大小、質(zhì)地都相同,再將這個(gè)盒子裝入一只不透明的袋子中.
(1)攪勻后從中摸出個(gè)盒子,盒中的紙片既是軸對稱圖形又是中心對稱圖形的概率是 ;
(2)攪勻后先從中摸出個(gè)盒子(不放回),再從余下的個(gè)盒子中摸出個(gè)盒子,把摸出的個(gè)盒中的紙片長度相等的邊拼在一起,求拼成的圖形是軸對稱圖形的概率.(不重疊無縫隙拼接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=x2﹣x﹣2的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的圖形是函數(shù)y=|x2﹣x﹣2|的圖象,已知過點(diǎn)D(0,4)的直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個(gè)交點(diǎn),則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),與x軸的另外一個(gè)交點(diǎn)為C
(1)填空:b= ,c= ,點(diǎn)C的坐標(biāo)為 .
(2)如圖1,若點(diǎn)P是第一象限拋物線上的點(diǎn),連接OP交直線AB于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m.PQ與OQ的比值為y,求y與m的數(shù)學(xué)關(guān)系式,并求出PQ與OQ的比值的最大值.
(3)如圖2,若點(diǎn)P是第四象限的拋物線上的一點(diǎn).連接PB與AP,當(dāng)∠PBA+∠CBO=45°時(shí).求△PBA的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)(x>0)的圖象相交于點(diǎn)B(t,1).
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)點(diǎn)P的坐標(biāo)為(m,m)(m>0),過P作PE∥x軸,交直線AB于點(diǎn)E,作PF∥y軸,交函數(shù)(x>0)的圖象于點(diǎn)F.
①若m=2,比較線段PE,PF的大;
②直接寫出使PE≤PF的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(﹣1,0),與y軸交于點(diǎn)B,且對稱軸為x=1.
(1)求該拋物線的解析式;
(2)點(diǎn)P是拋物線對稱軸上的一動(dòng)點(diǎn),當(dāng)|PA﹣PB|取最大值時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=,E為CD邊上一點(diǎn),將△BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tan∠BAF=,則CE=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com