【題目】如圖,點O為平面直角坐標(biāo)系的原點,點Ax軸上,△OAB是邊長為4的等邊三角形,以O為旋轉(zhuǎn)中心,將△OAB按順時針方向旋轉(zhuǎn)60°,得到△OA′B′,那么點A′的坐標(biāo)為( 。

A. (2,2 B. (﹣2,4) C. (﹣2,2 D. (﹣2,2

【答案】D

【解析】分析:作BCx軸于C,如圖,根據(jù)等邊三角形的性質(zhì)得則易得A點坐標(biāo)和O點坐標(biāo),再利用勾股定理計算出然后根據(jù)第二象限點的坐標(biāo)特征可寫出B點坐標(biāo);由旋轉(zhuǎn)的性質(zhì)得則點A與點B重合,于是可得點A的坐標(biāo).

詳解:作BCx軸于C,如圖,

OAB是邊長為4的等邊三角形

A點坐標(biāo)為(4,0),O點坐標(biāo)為(0,0),

RtBOC,

B點坐標(biāo)為

OAB按順時針方向旋轉(zhuǎn),得到OAB,

∴點A與點B重合,即點A的坐標(biāo)為

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C是直線AB,DE之間的一點,∠ACD=90°,下列條件能使得ABDE的是(。

A. α+∠β=180° B. β﹣∠α=90° C. β=3∠α D. α+∠β=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M是雙曲線上一點,過點M軸、y軸的垂線,分別交直線于點D、C,若直線軸交于點A,與軸交于點B,則的值為

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某起重機廠四月份生產(chǎn)A型起重機25臺,B型起重機若干臺.從五月份起, A型起重機月增長率相同,B型起重機每月增加3臺.已知五月份生產(chǎn)的A型起重機是B型起重機的2倍,六月份A、 B型起重機共生產(chǎn)54臺.求四月份生產(chǎn)B型起重機的臺數(shù)和從五月份起A型起重機的月增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點、點是數(shù)軸上原點兩側(cè)的兩點,其中點在原點的左側(cè),且滿足,.

1)點、在數(shù)軸上對應(yīng)的數(shù)分別為____________.

2)點、同時分別以每秒1個單位長度和每秒2個單位長度的速度向左運動.

①經(jīng)過幾秒后,;

②點在運動的同時,點以每秒1個單位長度的速度從原點向右運動,經(jīng)過幾秒后,點、中的某一點成為其余兩點所連線段的中點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.

(1)試判斷四邊形OCED的形狀,并說明理由;

(2)若AB=3,BC=4,求四邊形OCED的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】制作一種產(chǎn)品,需先將材料加熱達到60 ℃后,再進行操作.設(shè)該材料溫度為y),從加熱開始計算的時間為xmin).據(jù)了解,當(dāng)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃

1)分別求出將材料加熱和停止加熱進行操作時,yx的函數(shù)關(guān)系式;

2)根據(jù)工藝要求,當(dāng)材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,表示一騎自行車者與一騎摩托車者沿相同路線由甲地到乙地行駛過程的圖象,兩地間的距離是100千米,請根據(jù)圖象回答或解決下面的問題.

1)誰出發(fā)的較早?早多長時間?誰到達乙地早?早到多長時間?

2)兩人在途中行駛的速度分別是多少?

3)指出在什么時間段內(nèi)兩車均行駛在途中;在這段時間內(nèi),

①自行車行駛在摩托車前面;

②自行車與摩托車相遇;

③自行車行駛在摩托車后面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,AB=AC,以AB為直徑的O分別交AC、BC于點D、E,點F在AC的延長線上,且CAB=2CBF

(1)試判斷直線BF與O的位置關(guān)系,并說明理由;

(2)若AB=6,BF=8,求tanCBF

查看答案和解析>>

同步練習(xí)冊答案