某公司欲招聘一名工作人員,對甲、乙兩位應(yīng)聘者進(jìn)行面試和筆試,他們的成績(百分制)如下表所示.
應(yīng)聘者 | 面試 | 筆試 |
甲 | 87 | 90 |
乙 | 91 | 82 |
若公司分別賦予面試成績和筆試成績6和4的權(quán),計算甲、乙兩人各自的平均成績,誰將被錄取?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
點(diǎn)A(3,﹣1)關(guān)于原點(diǎn)的對稱點(diǎn)A′的坐標(biāo)是( 。
A. (﹣3,﹣1) B. (3,1) C. (﹣3,1) D. (﹣1,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知點(diǎn)A(1,2)是正比例函數(shù)y1=kx(k≠0)與反比例函數(shù)y2=(m≠0)的一個交點(diǎn).
(1)求正比例函數(shù)及反比例函數(shù)的表達(dá)式;
(2)根據(jù)圖象直接回答:在第一象限內(nèi),當(dāng)x取何值時,y1<y2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖4,在△ABC中,AB=AC,D是邊BC的中點(diǎn),一個圓過點(diǎn)A,交邊AB于點(diǎn)E,且與BC相切于點(diǎn)D,則該圓的圓心是
A.線段AE的中垂線與線段AC的中垂線的交點(diǎn)
B.線段AB的中垂線與線段AC的中垂線的交點(diǎn)
C.線段AE的中垂線與線段BC的中垂線的交點(diǎn)
D.線段AB的中垂線與線段BC的中垂線的交點(diǎn)
圖4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知四邊形ABCD內(nèi)接于⊙O,∠ADC=90°,∠DCB<90°,對角線AC平分∠DCB ,
延長DA,CB相交于點(diǎn)E.
(1)如圖11,EB=AD,求證:△ABE是等腰直角三角形;
(2)如圖12,連接OE,過點(diǎn)E作直線EF,使得∠OEF=30°.
當(dāng)∠ACE≥30°時,判斷直線EF與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在半徑為5cm的⊙O中,弦AB=6cm,OC⊥AB于點(diǎn)C,則OC=( 。
A.3cm B. 4cm C. 5cm D. 6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB為⊙O的直徑,直線CD切⊙O于點(diǎn)D,AM⊥CD于點(diǎn)M,BN⊥CD于N.
(1)求證:∠ADC=∠ABD;
(2)求證:AD2=AM•AB;
(3)若AM=,sin∠ABD=,求線段BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
關(guān)于x的一元二次方程(k﹣1)x2﹣2x+1=0有兩個不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com