【題目】某校初三年級(jí)(1)班要舉行一場(chǎng)畢業(yè)聯(lián)歡會(huì).規(guī)定每個(gè)同學(xué)分別轉(zhuǎn)動(dòng)下圖中兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤(pán)A、B(轉(zhuǎn)盤(pán)A被均勻分成三等份.每份分別標(biāo)上1.2,3三個(gè)數(shù)宇.轉(zhuǎn)盤(pán)B被均勻分成二等份.每份分別標(biāo)上4,5兩個(gè)數(shù)字).若兩個(gè)轉(zhuǎn)盤(pán)停止后指針?biāo)竻^(qū)域的數(shù)字都為偶數(shù)(如果指針恰好指在分格線上.那么重轉(zhuǎn)直到指針指向某一數(shù)字所在區(qū)域?yàn)橹梗畡t這個(gè)同學(xué)要表演唱歌節(jié)目.請(qǐng)求出這個(gè)同學(xué)表演唱歌節(jié)目的概率(要求用畫(huà)樹(shù)狀圖或列表方法求解)
【答案】解:畫(huà)樹(shù)狀圖得: ∵共有6種等可能的結(jié)果,兩個(gè)轉(zhuǎn)盤(pán)停止后指針?biāo)竻^(qū)域的數(shù)字都為偶數(shù)的有1種情況,
∴這個(gè)同學(xué)表演唱歌節(jié)目的概率為: .
【解析】首先根據(jù)題意畫(huà)出樹(shù)狀圖,由樹(shù)狀圖求得所有等可能的結(jié)果與兩個(gè)轉(zhuǎn)盤(pán)停止后指針?biāo)竻^(qū)域的數(shù)字都為偶數(shù)情況,然后利用概率公式求解即可求得答案.
【考點(diǎn)精析】掌握列表法與樹(shù)狀圖法是解答本題的根本,需要知道當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)狀圖法求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,坐標(biāo)平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),其頂點(diǎn)為D,且k>0.若△ABC與△ABD的面積比為1:4,則k值為何?( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)(﹣2,0),(x1 , 0),且1<x1<2,與y軸的正半軸的交點(diǎn)在(0,2)的下方.下列結(jié)論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1<0.其中正確結(jié)論有 . (填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,直線AN、MC交于點(diǎn)E,直線BM、CN交于點(diǎn)F.
(1)求證:AN=MB;
(2)求證:△CEF為等邊三角形;
(3)將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°,其它條件不變,在圖②中補(bǔ)出符合要求的圖形,并判斷(1)題中的結(jié)論是否依然成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以1cm/s的速度移動(dòng),點(diǎn)Q從C點(diǎn)出發(fā)沿CB邊向點(diǎn)B以2cm/s的速度移動(dòng).
(1)如果P、Q同時(shí)出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)是否存在某一時(shí)刻,使△PCQ的面積等于△ABC面積的一半,并說(shuō)明理由.
(3)點(diǎn)P、Q在移動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得△PCQ的面積達(dá)到最大值,并說(shuō)明利理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點(diǎn)A、B分別落在坐標(biāo)軸上.O為原點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(0,8).動(dòng)點(diǎn)M從點(diǎn)O出發(fā).沿OA向終點(diǎn)A以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿AB向終點(diǎn)B以每秒 個(gè)單位的速度運(yùn)動(dòng).當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)M、N運(yùn)動(dòng)的時(shí)間為t秒(t>0).
(1)當(dāng)t=3秒時(shí).直接寫(xiě)出點(diǎn)N的坐標(biāo),并求出經(jīng)過(guò)O、A、N三點(diǎn)的拋物線的解析式;
(2)在此運(yùn)動(dòng)的過(guò)程中,△MNA的面積是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△MNA是一個(gè)等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問(wèn)題:
例題:解一元二次不等式x2﹣4>0
解:∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為
(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號(hào)得正”,得
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式x2﹣4>0的解集為x>2或x<﹣2.
(1)一元二次不等式x2﹣16>0的解集為;
(2)分式不等式 的解集為;
(3)解一元二次不等式2x2﹣3x<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的⊙O是△ADC的外接圓,過(guò)點(diǎn)O作PO⊥AB,交AC于點(diǎn)E,PC的延長(zhǎng)線交AB的延長(zhǎng)線于點(diǎn)F,∠PEC=∠PCE.
(1)求證:FC為⊙O的切線;
(2)若△ADC是邊長(zhǎng)為a的等邊三角形,求AB的長(zhǎng).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副含 和 角的三角板 和 疊合在一起,邊 與 重合, (如圖1),點(diǎn) 為邊 的中點(diǎn),邊 與 相交于點(diǎn) .現(xiàn)將三角板 繞點(diǎn) 按順時(shí)針?lè)较蛐D(zhuǎn)(如圖2),在 從 到 的變化過(guò)程中,點(diǎn) 相應(yīng)移動(dòng)的路徑長(zhǎng)為 . (結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com