【題目】分組合作學(xué)習(xí)成為我市推動課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機抽取100人作為樣本,對分組合作學(xué)習(xí)實施前后學(xué)生的學(xué)習(xí)興趣變化情況進行調(diào)查分析,統(tǒng)計如下:

分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣

請結(jié)合圖中信息解答下列問題:

1)求出分組前學(xué)生學(xué)習(xí)興趣為的所占的百分比為 ;

2)補全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計圖;

3)通過分組合作學(xué)習(xí)前后對比,請你估計全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請根據(jù)你的估計情況談?wù)剬?/span>分組合作學(xué)習(xí)這項舉措的看法.

【答案】130%;(2)見解析;(3)有300人,分組合作學(xué)習(xí)大大提高了學(xué)生的學(xué)習(xí)興趣,要全力推行這種課堂教學(xué)模式.

【解析】

1)用1減去扇形統(tǒng)計圖中其它三項所占百分比即得答案;

2)用抽取的100人減去條形統(tǒng)計圖中其它三項的人數(shù)可得分組后學(xué)生學(xué)習(xí)興趣為的人數(shù),進而可補全條形統(tǒng)計圖;

3)先求出100人中學(xué)習(xí)興趣獲得提高的學(xué)生所占的百分比,再乘以2000即可.

解:(1125%25%20%=30%

故答案為:30%;

210030355=30(人),分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計圖如下:

3)分組前學(xué)生學(xué)習(xí)興趣為的有100×25%=25(人),分組后提高了3025=5(人);

分組前學(xué)生學(xué)習(xí)興趣為的有100×30%=30(人),分組后提高了3530=5(人);

分組前學(xué)生學(xué)習(xí)興趣為極高的有100×25%=25(人),分組后提高了3025=5(人),

2000×=300(人).

答:全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有300人,分組合作學(xué)習(xí)大大提高了學(xué)生的學(xué)習(xí)興趣,要全力推行這種課堂教學(xué)模式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.

1)求證:△ABC∽△CBD;

2)如果AC=4,BC=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將矩形繞點順時針旋轉(zhuǎn)得矩形,若,則圖中陰影部分的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果拋物線的頂點在拋物線上,同時,拋物線的頂點在拋物線上,那么我們稱拋物線關(guān)聯(lián).

1)已知拋物線,請判斷拋物線 與拋物線是否關(guān)聯(lián),并說明理由.

2)拋物線,動點的坐標(biāo)為,將拋物線繞點旋轉(zhuǎn)180°得到拋物線,若拋物線關(guān)聯(lián),求拋物線的解析式.

3)點為拋物線的頂點,點為拋物線關(guān)聯(lián)的拋物線的頂點,是否存在以為斜邊的等腰直角三角形ABC,使其直角頂點在直線上?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的有(  )

(1)、的平方根是±5;(2)、五邊形的內(nèi)角和是540°;(3)、拋物線y=x2+2x+4x軸無交點;(4)、等腰三角形兩邊長為6cm4cm,則它的周長是16cm.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點,將ABE沿直線AE折疊時點B落在點F處,連接FC,若∠DAF18°,則∠DCF_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+cx軸交于A、B兩點(點A在點B的左側(cè)),點M為頂點,連接OM,若yx的部分對應(yīng)值如表所示:

x

1

0

3

y

0

0

1)求拋物線的解析式;

2)拋物線與y軸交于點C,點Q是直線BC下方拋物線上一點,點Q的橫坐標(biāo)為xQ.若SBCQSBOC,求xQ的取值范圍;

3)如圖2,平移此拋物線使其頂點為坐標(biāo)原點,P0,﹣1)為y軸上一點,E為拋物線上y軸左側(cè)的一個動點,從E點發(fā)出的光線沿EP方向經(jīng)過y軸上反射后與此拋物線交于另一點F.則當(dāng)E點位置變化時,直線EF是否經(jīng)過某個定點?如果是,請求出此定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校美術(shù)組要購買鉛筆和橡皮,按照商店規(guī)定,若同時購買60支鉛筆和30塊橡皮,則需按零售價購買,共需支付30元;若同時購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共需支付40.5.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10.求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75)分成五組,并繪制了下列不完整的統(tǒng)計圖表.

分?jǐn)?shù)段

頻數(shù)

頻率

74.579.5

2

0.05

79.584.5

m

0.2

84.589.5

12

0.3

89.594.5

14

n

94.599.5

4

0.1

(1)表中m__________n____________;

(2)請在圖中補全頻數(shù)直方圖;

(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分?jǐn)?shù)段內(nèi);

(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.

查看答案和解析>>

同步練習(xí)冊答案