【題目】“分組合作學(xué)習(xí)”成為我市推動課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機抽取100人作為樣本,對“分組合作學(xué)習(xí)”實施前后學(xué)生的學(xué)習(xí)興趣變化情況進行調(diào)查分析,統(tǒng)計如下:
分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣
請結(jié)合圖中信息解答下列問題:
(1)求出分組前學(xué)生學(xué)習(xí)興趣為“高”的所占的百分比為 ;
(2)補全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計圖;
(3)通過“分組合作學(xué)習(xí)”前后對比,請你估計全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請根據(jù)你的估計情況談?wù)剬?/span>“分組合作學(xué)習(xí)”這項舉措的看法.
【答案】(1)30%;(2)見解析;(3)有300人,“分組合作學(xué)習(xí)”大大提高了學(xué)生的學(xué)習(xí)興趣,要全力推行這種課堂教學(xué)模式.
【解析】
(1)用1減去扇形統(tǒng)計圖中其它三項所占百分比即得答案;
(2)用抽取的100人減去條形統(tǒng)計圖中其它三項的人數(shù)可得分組后學(xué)生學(xué)習(xí)興趣為“中”的人數(shù),進而可補全條形統(tǒng)計圖;
(3)先求出100人中學(xué)習(xí)興趣獲得提高的學(xué)生所占的百分比,再乘以2000即可.
解:(1)1﹣25%﹣25%﹣20%=30%,
故答案為:30%;
(2)100﹣30﹣35﹣5=30(人),分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計圖如下:
(3)分組前學(xué)生學(xué)習(xí)興趣為“中”的有100×25%=25(人),分組后提高了30﹣25=5(人);
分組前學(xué)生學(xué)習(xí)興趣為“高”的有100×30%=30(人),分組后提高了35﹣30=5(人);
分組前學(xué)生學(xué)習(xí)興趣為“極高”的有100×25%=25(人),分組后提高了30﹣25=5(人),
2000×=300(人).
答:全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有300人,“分組合作學(xué)習(xí)”大大提高了學(xué)生的學(xué)習(xí)興趣,要全力推行這種課堂教學(xué)模式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.
(1)求證:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果拋物線的頂點在拋物線上,同時,拋物線的頂點在拋物線上,那么我們稱拋物線與關(guān)聯(lián).
(1)已知拋物線:與:,請判斷拋物線 與拋物線是否關(guān)聯(lián),并說明理由.
(2)拋物線,動點的坐標(biāo)為,將拋物線繞點旋轉(zhuǎn)180°得到拋物線,若拋物線與關(guān)聯(lián),求拋物線的解析式.
(3)點為拋物線:的頂點,點為拋物線關(guān)聯(lián)的拋物線的頂點,是否存在以為斜邊的等腰直角三角形ABC,使其直角頂點在直線上?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
(1)、的平方根是±5;(2)、五邊形的內(nèi)角和是540°;(3)、拋物線y=x2+2x+4與x軸無交點;(4)、等腰三角形兩邊長為6cm和4cm,則它的周長是16cm.
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E為BC的中點,將△ABE沿直線AE折疊時點B落在點F處,連接FC,若∠DAF=18°,則∠DCF=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(點A在點B的左側(cè)),點M為頂點,連接OM,若y與x的部分對應(yīng)值如表所示:
x | … | ﹣1 | 0 | 3 | … |
y | … | 0 | 0 | … |
(1)求拋物線的解析式;
(2)拋物線與y軸交于點C,點Q是直線BC下方拋物線上一點,點Q的橫坐標(biāo)為xQ.若S△BCQ≥S△BOC,求xQ的取值范圍;
(3)如圖2,平移此拋物線使其頂點為坐標(biāo)原點,P(0,﹣1)為y軸上一點,E為拋物線上y軸左側(cè)的一個動點,從E點發(fā)出的光線沿EP方向經(jīng)過y軸上反射后與此拋物線交于另一點F.則當(dāng)E點位置變化時,直線EF是否經(jīng)過某個定點?如果是,請求出此定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校美術(shù)組要購買鉛筆和橡皮,按照商店規(guī)定,若同時購買60支鉛筆和30塊橡皮,則需按零售價購買,共需支付30元;若同時購買90支鉛筆和60塊橡皮,則可按批發(fā)價購買,共需支付40.5元.已知每支鉛筆的批發(fā)價比零售價低0.05元,每塊橡皮的批發(fā)價比零售價低0.10元.求每支鉛筆和每塊橡皮的批發(fā)價各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了慶祝中華人民共和國成立70周年,某市決定開展“我和祖國共成長”主題演講比賽,某中學(xué)將參加本校選拔賽的40名選手的成績(滿分為100分,得分為正整數(shù)且無滿分,最低為75分)分成五組,并繪制了下列不完整的統(tǒng)計圖表.
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
74.5~79.5 | 2 | 0.05 |
79.5~84.5 | m | 0.2 |
84.5~89.5 | 12 | 0.3 |
89.5~94.5 | 14 | n |
94.5~99.5 | 4 | 0.1 |
(1)表中m=__________,n=____________;
(2)請在圖中補全頻數(shù)直方圖;
(3)甲同學(xué)的比賽成績是40位參賽選手成績的中位數(shù),據(jù)此推測他的成績落在_________分?jǐn)?shù)段內(nèi);
(4)選拔賽中,成績在94.5分以上的選手,男生和女生各占一半,學(xué)校從中隨機確定2名選手參加全市決賽,請用列舉法或樹狀圖法求恰好是一名男生和一名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com