【題目】如果拋物線的頂點(diǎn)在拋物線上,同時(shí),拋物線的頂點(diǎn)在拋物線上,那么我們稱拋物線關(guān)聯(lián).

1)已知拋物線,請(qǐng)判斷拋物線 與拋物線是否關(guān)聯(lián),并說明理由.

2)拋物線,動(dòng)點(diǎn)的坐標(biāo)為,將拋物線繞點(diǎn)旋轉(zhuǎn)180°得到拋物線,若拋物線關(guān)聯(lián),求拋物線的解析式.

3)點(diǎn)為拋物線的頂點(diǎn),點(diǎn)為拋物線關(guān)聯(lián)的拋物線的頂點(diǎn),是否存在以為斜邊的等腰直角三角形ABC,使其直角頂點(diǎn)在直線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)MC上,MC上;(2),;(3)

【解析】

1C:頂點(diǎn)坐標(biāo)M1,5),當(dāng)x=1時(shí),y=2x2+4x-1=5,故拋物線C1頂點(diǎn)在C2的拋物線上,即可求解;

2)求出C2頂點(diǎn)坐標(biāo)為(9+2t,-2),將該頂點(diǎn)坐標(biāo)代入C1的函數(shù)表達(dá)式得:-2=-9+2t+92+6,即可求解;

3)設(shè)點(diǎn)C-10,n),點(diǎn)B-1-2)或(-17,-2),點(diǎn)A-9,6),以AB為斜邊的等腰直角三角形ABC,則AC2=BC2AC2+BC2=AB2,即可求解.

1C:頂點(diǎn)坐標(biāo)M1,5),

當(dāng)x=1時(shí),y=2x2+4x-1=5,故拋物線C1頂點(diǎn)在C2的拋物線上;

C:頂點(diǎn)坐標(biāo)M-1,-3),

同理可得:拋物線C2頂點(diǎn)在C1的拋物線上,

故:拋物線C1與拋物線C2相互關(guān)聯(lián);

2C1拋物線頂點(diǎn)坐標(biāo)為:(-9,6),點(diǎn)P的坐標(biāo)為(t,2),

由中點(diǎn)公式得:C2頂點(diǎn)坐標(biāo)為(9+2t,-2),

將該頂點(diǎn)坐標(biāo)代入C1的函數(shù)表達(dá)式得:-2=-9+2t+92+6,

解得:t=-5-13

C2頂點(diǎn)坐標(biāo)為(-1,-2)或(-17,-2),

故函數(shù)C2的表達(dá)式為:y (x+1)22y (x+17)22;

3)存在,理由:

設(shè)點(diǎn)C-10,n),點(diǎn)A-9,6),

當(dāng)點(diǎn)B在函數(shù)對(duì)稱軸的右側(cè)時(shí),如圖,∠ACB=90°,CA=CB

作直線lx=-10,過點(diǎn)A作直線l的垂線交于點(diǎn)G

過點(diǎn)Cx軸的平行線、過點(diǎn)Bx軸的垂線,兩條直線交于點(diǎn)H

∵∠GCA+AGH=90°,∠AGH+BCH=90°

∴∠BCH=ACG,

CGA=CHB=90°CA=CB,

∴△CGA≌△CHBAAS),

BH=AG,CG=CH,

則點(diǎn)B-4-n,n-1),

將點(diǎn)B的坐標(biāo)代入拋物線C1y (x+9)+6并解得:n=1±4;

綜上,點(diǎn)C的坐標(biāo)為:(-10,1+4)或(-10,1-4).

當(dāng)點(diǎn)B在函數(shù)對(duì)稱軸的左側(cè)時(shí),

同理可得點(diǎn)Bn-16,n+1),

將點(diǎn)B的坐標(biāo)代入函數(shù)表達(dá)式并解得:n=3

綜上,點(diǎn)C的坐標(biāo)為:(-101+4)或(-10,1-4)或(-10,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為備戰(zhàn)奧運(yùn)會(huì),中國(guó)女排的姑娘們刻苦訓(xùn)練,為國(guó)爭(zhēng)光,如圖,已知排球場(chǎng)的長(zhǎng)度 OD 18 米,位于球場(chǎng)中線處球網(wǎng)的高度 AB 2.43 米,一隊(duì)員站在點(diǎn) O 處發(fā)球,排球從點(diǎn) O 的正上方 1.8 米的 C 點(diǎn)向正前方飛出,當(dāng)排球運(yùn)行至離點(diǎn) O 的水平距離 OE 7 米時(shí),到達(dá)最高點(diǎn) G,建立如圖所示的平面直角坐標(biāo)系.

1)當(dāng)球上升的最大高度為 3.2 米時(shí),求排球飛行的高度 y(單位:米)與水平距離 x(單位:米)的函數(shù)關(guān)系式.(不要求寫出自變量 x 的取值范圍)

2)在(1)的條件下,對(duì)方距球網(wǎng) 0.5 米的點(diǎn) F 處有一隊(duì)員,她起跳后的最大高度為 3.1米,問這次她是否可以攔網(wǎng)成功?請(qǐng)通過計(jì)算說明.(不考慮排球的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)D,拋物線頂點(diǎn)為H(1,2).

(1)求拋物線的解析式;

(2)點(diǎn)P為直線AD上方拋物線的對(duì)稱軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)SPAD=3,若在x軸上存在一動(dòng)點(diǎn)Q,使PQ+QB最小,求此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值;

(3)若點(diǎn)E為拋物線上的動(dòng)點(diǎn),點(diǎn)G,F(xiàn)為平面內(nèi)的點(diǎn),以BE為邊構(gòu)造以B,E,F(xiàn),G為頂點(diǎn)的正方形,當(dāng)頂點(diǎn)F或者G恰好落在y軸上時(shí),求點(diǎn)E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著低碳生活,綠色出行理念的普及,新能源汽車正逐漸成為人們喜愛的交通工具.某汽車銷售公司計(jì)劃購(gòu)進(jìn)一批新能源汽車嘗試進(jìn)行銷售,據(jù)了解2A型汽車、3B型汽氣車的進(jìn)價(jià)共計(jì)80萬元;3A型汽車、2B型汽車的進(jìn)價(jià)共計(jì)95萬元。

(1)A、B兩種型號(hào)的汽車每輛進(jìn)價(jià)分別為多少方元?

(2)若該公司計(jì)劃正好用200萬元購(gòu)進(jìn)以上兩種型號(hào)的新能源汽車(兩種型號(hào)的汽車均購(gòu)買),請(qǐng)你幫助該公司設(shè)計(jì)購(gòu)買方案;

(3)若該汽車銷售公司銷售1A型汽車可獲利8000,銷售1B型汽車可獲利5000,(2)中的購(gòu)買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線交于A,B兩點(diǎn),交x軸與DC兩點(diǎn),連接AC,已知A0,3),C30).(1)拋物線的解析式__;(2)設(shè)E為線段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止.若使點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少,則點(diǎn)E的坐標(biāo)__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形在平面直角坐標(biāo)系中,點(diǎn),分別在軸,軸的正半軸上,等腰直角三角形的直角頂點(diǎn)在原點(diǎn),,分別在,上,且,.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為,

(Ⅰ)①如圖①,求的長(zhǎng);②如圖②,連接,,求證;

(Ⅱ)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一周,當(dāng)時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分組合作學(xué)習(xí)成為我市推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機(jī)抽取100人作為樣本,對(duì)分組合作學(xué)習(xí)實(shí)施前后學(xué)生的學(xué)習(xí)興趣變化情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)如下:

分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣

請(qǐng)結(jié)合圖中信息解答下列問題:

1)求出分組前學(xué)生學(xué)習(xí)興趣為的所占的百分比為

2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計(jì)圖;

3)通過分組合作學(xué)習(xí)前后對(duì)比,請(qǐng)你估計(jì)全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請(qǐng)根據(jù)你的估計(jì)情況談?wù)剬?duì)分組合作學(xué)習(xí)這項(xiàng)舉措的看法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7屆世界軍人運(yùn)動(dòng)會(huì)于20191018日在武漢開幕,為備戰(zhàn)本屆軍運(yùn)會(huì),某運(yùn)動(dòng)員進(jìn)行了多次打靶訓(xùn)練,現(xiàn)隨機(jī)抽取該運(yùn)動(dòng)員部分打靶成績(jī)進(jìn)行整理分析,共分成四組:(優(yōu)秀)(良好)、(合格)、(不合格),繪制了如下不完整的統(tǒng)計(jì)圖:

根據(jù)以上信息,解答下列問題:

(1)直接寫出本次統(tǒng)計(jì)成績(jī)的總次數(shù)和圖中的值.

(2)求扇形統(tǒng)計(jì)圖中(合格)所對(duì)應(yīng)圓心角的度數(shù).

(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解初一學(xué)生的體重情況,學(xué)校從體檢結(jié)果中隨機(jī)抽取了部分學(xué)生的體重?cái)?shù)據(jù)并將抽樣的數(shù)據(jù)進(jìn)行了如下整理:

1)請(qǐng)將圖表中的數(shù)據(jù)補(bǔ)充完整;

2)如果初一年級(jí)有1200名學(xué)生參加了本次體檢,估計(jì)等級(jí)的人數(shù);

3)請(qǐng)結(jié)合題目中的數(shù)據(jù),給初一學(xué)生一個(gè)體檢反饋或意見.

查看答案和解析>>

同步練習(xí)冊(cè)答案