【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.

1)求證:△ABC∽△CBD;

2)如果AC=4,BC=3,求BD的長.

【答案】1)證明見解析,(2

【解析】試題分析:(1)根據(jù)相似三角形的判定,由已知可證∠A=∠DCB,又因為∠ACB=∠BDC=90°,即證△ABC∽△CBD,

2)根據(jù)勾股定理得到AB=5,根據(jù)三角形的面積公式得到CD=,然后根據(jù)勾股定理即可得到結(jié)論.

1)證明:∵CD⊥AB,

∴∠BDC=90°

∴∠A+∠ACD=90°

∵∠ACB=90°

∴∠DCB+∠ACD=90°

∴∠A=∠DCB

∵∠ACB=∠BDC=90°,

∴△ABC∽△CBD;

2)解:∵∠ACB=90°,AC=4,BC=3

∴AB=5,

∴CD=

∵CD⊥AB,

∴BD===

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)中的xy滿足下表:

x

0

1

2

3

4

5

y

3

0

1

0

m

8

1)可求得m的值為________

2)在坐標系畫出該函數(shù)的圖象;

3)當y≥0時,x的取值范圍為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠BCA90°,∠A<∠ABC,DAC邊上一點,且DADBOAB的中點,CE是△BCD的中線.

(1)如圖a,連接OC,請直接寫出∠OCE和∠OAC的數(shù)量關(guān)系:   

(2)M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉(zhuǎn)得射線ON,使∠MON=∠ADB,ON與射線CA交于點N

①如圖b,猜想并證明線段OM和線段ON之間的數(shù)量關(guān)系;

②若∠BAC30°,BCm,當∠AON15°時,請直接寫出線段ME的長度(用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為備戰(zhàn)奧運會,中國女排的姑娘們刻苦訓(xùn)練,為國爭光,如圖,已知排球場的長度 OD 18 米,位于球場中線處球網(wǎng)的高度 AB 2.43 米,一隊員站在點 O 處發(fā)球,排球從點 O 的正上方 1.8 米的 C 點向正前方飛出,當排球運行至離點 O 的水平距離 OE 7 米時,到達最高點 G,建立如圖所示的平面直角坐標系.

1)當球上升的最大高度為 3.2 米時,求排球飛行的高度 y(單位:米)與水平距離 x(單位:米)的函數(shù)關(guān)系式.(不要求寫出自變量 x 的取值范圍)

2)在(1)的條件下,對方距球網(wǎng) 0.5 米的點 F 處有一隊員,她起跳后的最大高度為 3.1米,問這次她是否可以攔網(wǎng)成功?請通過計算說明.(不考慮排球的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面時,水面寬.當水面上升時達到警戒水位,此時拱橋內(nèi)的水面寬度是多少?

下面給出了解決這個問題的兩種方法,請補充完整:

方法一:如圖1.以點為原點,所在直線為軸,建立平面直角坐標系,此時點的坐標為_______,拋物線的項點坐標為_______,可求這條拋物線所表示的二次函數(shù)解析式為_______.當時,求出此時自變量的取值,即可解決這個問題.

方法二:如圖2,以拋物線頂點為原點,對稱軸為軸.建立平面直角坐標系,這時這條拋物線所表示的二次函數(shù)的解析式為_______,當水面達到警戒水位,即_______時,求出此時自變量的取值為_______,從而得水面寬為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

某同學(xué)遇到這樣一個問題:在平面直角坐標系中,已知直線在拋物線上,求點到直線的距離

如圖1,他過點于點軸分別交軸于點交直線于點.他發(fā)現(xiàn),可求出的長,再利用求出的長,即為點到直線的距離

     

請回答:

(1)圖1中, ,點到直線的距離

參考該同學(xué)思考問題的方法,解決下列問題:

在平面直角坐標系中,點是拋物線上的一動點,設(shè)點到直線的距離為

(2)如圖2,

,則點的坐標為

,在點運動的過程中,求的最小值;

(3)如圖3,,在點運動的過程中,的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點、 分別在線段和線段上, 平分

如圖1,求證:

如圖2,若.求證:

問的條件下,如圖3 在線段上取一點,使.過點于點,作于點,連接,交于點,連接,交于點,若,的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0)和點B,與y軸交于點C,點C關(guān)于拋物線對稱軸的對稱點為點D,拋物線頂點為H(1,2).

(1)求拋物線的解析式;

(2)P為直線AD上方拋物線的對稱軸上一動點,連接PA,PD.當SPAD=3,若在x軸上存在一動點Q,使PQ+QB最小,求此時點Q的坐標及PQ+QB的最小值;

(3)若點E為拋物線上的動點,點G,F(xiàn)為平面內(nèi)的點,以BE為邊構(gòu)造以B,E,F(xiàn),G為頂點的正方形,當頂點F或者G恰好落在y軸上時,求點E的橫坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分組合作學(xué)習(xí)成為我市推動課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機抽取100人作為樣本,對分組合作學(xué)習(xí)實施前后學(xué)生的學(xué)習(xí)興趣變化情況進行調(diào)查分析,統(tǒng)計如下:

分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣

請結(jié)合圖中信息解答下列問題:

1)求出分組前學(xué)生學(xué)習(xí)興趣為的所占的百分比為 ;

2)補全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計圖;

3)通過分組合作學(xué)習(xí)前后對比,請你估計全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請根據(jù)你的估計情況談?wù)剬?/span>分組合作學(xué)習(xí)這項舉措的看法.

查看答案和解析>>

同步練習(xí)冊答案