【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形;
(2)若△ABC是邊長為2的正三角形,求四邊形AODE的面積.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質(zhì)可得出AC⊥BD,即∠AOD=90°,繼而可判斷出四邊形AODE是矩形.
(2)由菱形的性質(zhì)和勾股定理求出OB,得出OD,由矩形的性質(zhì)即可得出答案.
(1)∵DE∥AC,AE∥BD,
∴四邊形AODE是平行四邊形,
∵四邊形ABCD是菱形,
∴AC⊥BD,
∴∠AOD=∠AOD=90°,
∴四邊形AODE是矩形;
(2)∵△ABC是邊長為2的正三角形,
∴AB=AC=2,
∠ABC=60°,
∵四邊形ABCD為菱形,
∴AO=AC=1,OD=OB,
∵∠AOB=90°,
∴OB=
∴OD=OB=,
∵四邊形AODE是矩形,
∴四邊形AODE的面積=
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】為了提高中學生身體素質(zhì),學校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).
(1)這次調(diào)查中,一共調(diào)查了名學生;
(2)請補全兩幅統(tǒng)計圖;
(3)若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為方便市民低碳生活綠色出行,市政府計劃改造如圖所示的人行天橋:天橋的高是10米,原坡面傾斜角∠CAB=45°.
(1)若新坡面傾斜角∠CDB=28°,則新坡面的長CD長是多少?(精確到0.1米)
(2)若新坡角頂點D前留3米的人行道,要使離原坡角頂點A處10米的建筑物不拆除,新坡面的傾斜角∠CDB度數(shù)的最小值是多少?(精確到1°)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.解答下列問題:
(1)如果AB=AC,∠BAC=90°
①當點D在線段BC上時(與點B不重合),如圖2,線段CF、BD之間的位置關(guān)系為 , 數(shù)量關(guān)系為 .
②當點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,為什么?
(2)如圖4,如果AB≠AC,∠BAC≠90°,點D在線段BC上運動.且AC=4 ,BC=3,∠BCA=45°,正方形ADEF的邊DE與線段CF相交于點P,求線段CP長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中點.點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒3個單位長度的速度從點C出發(fā),沿CB向點B運動.點P停止運動時,點Q也隨之停止運動,當運動時間t秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形,則t的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y=在第一象限的圖象經(jīng)過點B,則△OAC與△BAD的面積之差S△OAC﹣S△BAD為( )
A. 36 B. 12 C. 6 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是小穎往表姐家打長途電話的收費記錄:
通話時間x(分鐘) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
電話費y(元) | 3 | 3 | 3 | 3.6 | 4.2 | 4.8 | 5.4 |
(1)上表的兩個變量中, 是自變量, 是因變量;
(2)寫出y與x之間的關(guān)系式;
(3)若小穎的通話時間是15分鐘,則需要付多少電話費?
(4)若小穎有24元錢,則她最多能打多少分鐘電話?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點E,若∠COB=3∠AOB,OC=2 ,則圖中陰影部分面積是(結(jié)果保留π和根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com