平面內(nèi)兩條直線,它們之間的距離等于a,一塊正方形紙板的邊長(zhǎng)也等于a.現(xiàn)將這塊硬紙板如圖所示放在兩條平行線上.

(1)如圖1,將點(diǎn)C放置在直線上,且O,使得直線、相交于E、F.求證:①BE="OE" ②的周長(zhǎng)等于;
(2)如圖2,若繞點(diǎn)C轉(zhuǎn)動(dòng)正方形硬紙板,使得直線、相交于E、F,試問的周長(zhǎng)等于還成立嗎?并證明你的結(jié)論;

(3)如圖3,將正方形硬紙片任意放置,使得直線、相交于E、F,直線CD相交于G,H,設(shè)AEF的周長(zhǎng)為,CGH的周長(zhǎng)為,試問,之間存在著什么關(guān)系?試直接寫出你的結(jié)論(不需證明).
(1)證明見解析(2)的周長(zhǎng)等于仍然成立,)證明見解析(3)
(1)證明:①連結(jié)
在正方形ABCD中
,∴..
又∵

·································· 4分
②同理:連結(jié),
.  

的周長(zhǎng)等于···························· 7分
(2)的周長(zhǎng)等于仍然成立. ······················ 8分
如圖2,過C作,連結(jié)
在正方形ABCD中


 
 
同理
 ················· 12分
(3)  14分
(1)中利用正方形的性質(zhì)和三角形全等可知,邊長(zhǎng)相等,和三角形的周長(zhǎng)的求解。
(2)同樣利用三角形全等的思想結(jié)合第一問的結(jié)論可知成立。
(3)利用平行的性質(zhì)得到角的關(guān)系,以及邊長(zhǎng)的關(guān)系,結(jié)合周長(zhǎng)公式得到結(jié)論。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,若將△ABC沿CA的方向平移CA的長(zhǎng),得△EFA,
⑴若△ABC的面積為3cm2,求四邊形BCEF的面積
⑵試猜想AF與BE有何關(guān)系?
⑶若∠BAC=60°,求∠FEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將邊長(zhǎng)為4的正方形沿著折痕折疊,使點(diǎn)落在邊的中點(diǎn)處,那么四邊形的面積等于      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在邊長(zhǎng)為6cm的菱形中∠DAB=600,E為AC上一動(dòng)點(diǎn),當(dāng)E運(yùn)動(dòng)到某個(gè)位置時(shí),BE+DE有最小值,這個(gè)最小值是    。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在四邊形ABCD中,∠B+∠D=1800,AB=AD,AC=1,∠ACD=600,則四邊形ABCD的面積為               。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,有一塊等腰梯形的草坪,草坪上底長(zhǎng)48米,下底長(zhǎng)108米,上下底相距40米,現(xiàn)要在草坪中修建一條橫、縱向的“”型甬道,甬道寬度相等,甬道面積是整個(gè)梯形面積的.設(shè)甬道的寬為米.

(1)求梯形的周長(zhǎng);
(2)用含的式子表示甬道的總長(zhǎng);
(3)求甬道的寬是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,MN是正方形ABCD的一條對(duì)稱軸,點(diǎn)P是直線MN上的一個(gè)動(dòng)點(diǎn),當(dāng)PC+PD最小時(shí),
∠PCD=_________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)E為正方形ABCD的BC邊的中點(diǎn),動(dòng)點(diǎn)F在對(duì)角線AC上運(yùn)動(dòng),連接BF、EF.設(shè)AF=x,△BEF的周長(zhǎng)為y,那么能表示y與x的函數(shù)關(guān)系的圖象大致是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

梯形的中位線長(zhǎng)為6,高為4,則該梯形的面積為__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案