【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問(wèn)題.

1)如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BOCO的交點(diǎn),試證明∠BOC90°+

2)如圖2中,O是∠ABC與外角∠ACD的平分線BOCO的交點(diǎn),試分析∠BOC與∠A有怎樣的關(guān)系?請(qǐng)說(shuō)明理由.

3)如圖3中,O是外角∠DBC與外角∠ECB的平分線BOCO的交點(diǎn),則∠BOC與∠A有怎樣的關(guān)系?(只寫(xiě)結(jié)論,不需證明)

【答案】1)見(jiàn)解析;(2)∠BOC=,理由見(jiàn)解析;(3)∠BOC=90°

【解析】

1)利用△ABC和△BOC的內(nèi)角和為180°進(jìn)行角度轉(zhuǎn)化可得結(jié)論;

2)設(shè)∠ABO=x,∠ACO=y,利用△ABC和△OBC的內(nèi)角和,可得出2個(gè)關(guān)于x、y、∠A、∠BOC的方程,消去xy可得;

3)設(shè)∠DBO=x,∠ECO=y,利用△ABC和△OBC的內(nèi)角和,可得出2個(gè)關(guān)于x、y、∠A、∠BOC的方程,消去x、y可得.

1)∵OB、OC分別時(shí)∠ABC和∠ACB的角平分線

∴∠ABO=21,∠ACB=2∠2

在△ABC中,∠A+2∠1+2∠2=180°,化簡(jiǎn)得:∠A+2(∠1+∠2)=180°

在△BOC中,∠1+∠2+∠BOC=180°,化簡(jiǎn)得:∠1+∠2=180°-∠BOC,代入上式得:

A+2(180°-∠BOC)=180°

化簡(jiǎn)得:∠BOC=90°+

2)設(shè)∠ABO=x,∠ACO=y

OABC與外角ACD的平分線BOCO的交點(diǎn)

∴∠OBC=∠OBA=x,∠OCD=∠OCA=y,∠ACB=180°2y

∴在△ABC中,∠A+2x+(180°2y)=180°,化簡(jiǎn)得:∠A=2(yx)

在△BOC中,x+∠BOC+(180°2y+y)=180°,化簡(jiǎn)得:∠BOC=(yx)

BOC=

3)設(shè)∠DBO=x,∠ECO=y

同理,∠OBC=x,∠OCB=y,∠ABC=180°2x,∠ACB=180°2y

∴在△ABC中,∠A+(180°2x)+ (180°2y)=180°,化簡(jiǎn)得:2(x+y)-∠A=180°

在△OBC中,x+y+BOC=180°,化簡(jiǎn)得:x+y=180°-∠BOC,代入上式得:

∠A+2∠BOC=180°,即:∠BOC=90°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD,∠B70°,∠BCE20°,∠CEF130°,請(qǐng)判斷ABEF的位置關(guān)系,并說(shuō)明理由.

解:   ,理由如下:

ABCD

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)100個(gè)家庭收入按從高到低是5800,……10000元各不相同,在輸入計(jì)算時(shí),把最大的數(shù)錯(cuò)誤地輸成100000元,則依據(jù)錯(cuò)誤的數(shù)據(jù)算出的平均數(shù)比實(shí)際平均數(shù)多(

A. 900B. 942C. 90000D. 9000

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋內(nèi)裝有四張完全相同的卡片,分別標(biāo)有數(shù)字1、2、3、4。
(1)若任取一張卡片,上面所標(biāo)數(shù)字是不小于3的概率為;
(2)在口袋中任取兩張卡片:請(qǐng)你利用樹(shù)狀圖或列表法求出這兩張卡片上的數(shù)字的積為奇數(shù)的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線,點(diǎn)為平面上一點(diǎn),連接

1)如圖1,點(diǎn)在直線、之間,當(dāng),時(shí),求

2)如圖2,點(diǎn)在直線之間左側(cè),的角平分線相交于點(diǎn),寫(xiě)出之間的數(shù)量關(guān)系,并說(shuō)明理由.

3)如圖3,點(diǎn)落在下方,的角平分線相交于點(diǎn),有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,對(duì)進(jìn)行循環(huán)往復(fù)的軸對(duì)稱變換,若原來(lái)點(diǎn)A坐標(biāo)是,則經(jīng)過(guò)第2019次變換后所得的A點(diǎn)坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,BC=6,CD=3,將△BCD沿對(duì)角線BD翻折,點(diǎn)C落在點(diǎn)C′處,BC′交AD于點(diǎn)E,則線段DE的長(zhǎng)為( ).

A.3
B.
C.5
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)采用隨機(jī)的方式對(duì)學(xué)生掌握安全知識(shí)的情況進(jìn)行測(cè)評(píng),并按成績(jī)高低分成優(yōu)、良、中、差四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)有關(guān)信息解答:

(1)接受測(cè)評(píng)的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“優(yōu)”部分所對(duì)應(yīng)扇形的圓心角為°,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生1200人,請(qǐng)估計(jì)該校對(duì)安全知識(shí)達(dá)到“良”程度的人數(shù);
(3)測(cè)評(píng)成績(jī)前五名的學(xué)生恰好3個(gè)女生和2個(gè)男生,現(xiàn)從中隨機(jī)抽取2人參加市安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小慧兩位同學(xué)在數(shù)學(xué)活動(dòng)課中,把長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙條粘合起來(lái),小明按如圖甲所示的方法粘合起來(lái)得到長(zhǎng)方形ABCD,粘合部分的長(zhǎng)度為6cm,小慧按如圖乙所示的方法粘合起來(lái)得到長(zhǎng)方形 A1B1C1D1 ,粘合部分的長(zhǎng)度為4cm。若長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙共有100張,則小明應(yīng)分配到( )張長(zhǎng)方形白紙條,才能使小明和小慧按各自粘合起來(lái)的長(zhǎng)方形面積相等(要求100張長(zhǎng)方形白紙條全部用完)
A.41
B.42
C.43
D.44

查看答案和解析>>

同步練習(xí)冊(cè)答案