【題目】請閱讀下列材料:
問題:已知方程,求一個一元二次方程,使它的根分別是已知方程根的倍
解:設(shè)所求方程的根為,則,所以.
把代入已知方程,得.
化簡,得
故所求方程為.
這種利用方程的代換求新方程的方法,我們稱為“換根法”.
請用閱讀材料提供的“換根法”求新方程(要求:把所求方程化為一般形式).
(1)已知方程,求一個一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為:_______________.
(2)已知方程,求一個一元二次方程,使它的根分別是已知方程根的倒數(shù).
(3)已知關(guān)于的一元二次方程()的兩個實數(shù)根分別為,,求一元二次方程的兩根.(直接寫出結(jié)果)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D在⊙O上,連結(jié)BC,過D作PF∥AC交AB于E,交⊙O于F,交BC于點G,交過B點的直線于點P,且∠BPF=∠ADC.
(1)判斷直線BP與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為,AC=2,BE=1,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長CA到點F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關(guān)系為 ,位置關(guān)系為 ;
(2)(拓展研究)
將△ADE繞點A旋轉(zhuǎn),(1)中的結(jié)論有無變化?僅就圖(2)的情形給出證明;
(3)(解決問題)
當AB=2,AD=,△ADE旋轉(zhuǎn)得到D,E,F三點共線時,直接寫出線段DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.
(1)如圖1,若AB為邊在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度數(shù);
(2)如圖2,∠ABC=α,∠ACD=β,BC=4,BD=6.
①若α=30°,β=60°,AB的長為 ;
②若改變α、β的大小,且α+β=90°,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】服裝廠準備生產(chǎn)某種樣式的服裝40000套,分黑色和彩色兩種.
(1)若生產(chǎn)黑色服裝的套數(shù)不多于彩色服裝套數(shù)的,問最多生產(chǎn)多少套黑色服裝?
(2)目前工廠有100名工人,平均每人生產(chǎn)400套,由于展品會上此種樣式服裝大受歡迎,工廠計劃增加產(chǎn)量;由于條件發(fā)生變化,人均生產(chǎn)套數(shù)將減少1.25a%(20<a<30),要使生產(chǎn)總量增加10%,則工人需增加2.4a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
(1)當銷售單價為70元時,每天的銷售利潤是多少?
(2)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)如果該企業(yè)每天的總成本不超過7000元,那么銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?(每天的總成本=每件的成本×每天的銷售量)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在以點O為圓心的兩個同心圓中,大圓的弦AB交小圓于點C,D(如圖).
(1)求證:AC=BD;
(2)若大圓的半徑R=10,小圓的半徑r=8,且圓O到直線AB的距離為6,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com