【題目】某中學(xué)八年級學(xué)生在學(xué)習(xí)等腰三角形的相關(guān)知識時時,經(jīng)歷了以下學(xué)習(xí)過程:
(1)(探究發(fā)現(xiàn))如圖1,在中,若平分,時,可以得出,為中點,請用所學(xué)知識證明此結(jié)論.
(2)(學(xué)以致用)如果和等腰有一個公共的頂點,如圖2,若頂點與頂點也重合,且,試探究線段和的數(shù)量關(guān)系,并證明.
(3)(拓展應(yīng)用)如圖3,在(2)的前提下,若頂點與頂點不重合,,(2)中的結(jié)論還成立嗎?證明你的結(jié)論
【答案】(1)詳見詳解;(2)DF=2BE,證明詳見詳解;(3)DF=2BE,證明詳見詳解
【解析】
(1)只要證明△ADB≌△ADC(ASA)即可;
(2)如圖2中,延長BE交CA的延長線于K,只要證明△BAK≌△CAD(ASA)即可;
(3)作FK∥CA交BE的延長線于K,交AB于J,利用(2)中的結(jié)論證明即可.
解:(1)如圖1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,
∵DA平分∠BAC,∴∠DAB=∠DAC,
∵AD=AD,∴△ADB≌△ADC(ASA),
∴AB=AC,BD=DC.
(2)結(jié)論:DF=2BE.
理由:如圖2中,延長BE交CA的延長線于K.
∵CE平分∠BCK,CE⊥BK,
∴由(1)中結(jié)論可知:CB=CK,BE=KE,
∵∠BAK=∠CAD=∠CEK=90°,
∴∠ABK+∠K=90°,∠ACE+∠K=90°,
∴∠ABK=∠ACD,∵AB=AC,
∴△BAK≌△CAD(ASA),CD=BK,
∴CD=2BE,
即DF=2BE.
(3)如圖3中,結(jié)論不變:DF=2BE.
理由:作FK∥CA交BE的延長線于K,交AB于J.
∵FK∥AC,∴∠FJB=∠A=90°,∠BFK=∠BCA,
由(2)可知Rt△ABC為等腰三角形
∵∠JBF=45°,
∴△BJF是等腰直角三角形,
∵∠BFE=∠ACB,∴∠BFE=∠BFJ,
由(2)可知:DF=2BE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:
(1)2018年春節(jié)期間,該市A、B、C、D、E這五個景點共接待游客人數(shù)為多少?
(2)扇形統(tǒng)計圖中E景點所對應(yīng)的圓心角的度數(shù)是 ,并補全條形統(tǒng)計圖.
(3)甲,乙兩個旅行團在A、B、D三個景點中隨機選擇一個,求這兩個旅行團選中同一景點的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,的平分線交邊BC于點E,于點H,連接CH并延長交邊AB于點F,連接AE交CF于點O,給出下列命題:
,,其中正確命題的序號
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店第一次用600元購進(jìn)2B鉛筆若干支,第二次又用600元購進(jìn)該款鉛筆,但這次每支的進(jìn)價是第一次進(jìn)價的倍,購進(jìn)數(shù)量比第一次少了30支.
(1)求第一次每支鉛筆的進(jìn)價是多少元?
(2)若要求這兩次購進(jìn)的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點D,連接CD,則△BDC的周長為( 。
A. 8 B. 9 C. 5+ D. 5+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設(shè)AE,BF交于點G,連接DG,則DG的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點D,過點D作∠ABD=∠ADE,交AC于點E.
(1)求證:DE為⊙O的切線.
(2)若⊙O的半徑為,AD=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖所示,在中,和的平分線交于點E,過點E作交AB于點M,交AC于點N,若,則線段MN的長為________.
(2)如圖所示,已知,和的平分線相交于點O,,,則 的周長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A、C的坐標(biāo)分別是(﹣1,0)和(2,0),以OC為直徑作圓⊙P,AB切⊙P于點B,交y軸于點E.點M是劣弧上一動點,CM交BP于點N,BM交x軸于點D.
(1)求點E的坐標(biāo);
(2)當(dāng)點M在弧BO上運動時,PD﹣PN的值是否變化?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com