【題目】某商店第一次用600元購進(jìn)2B鉛筆若干支,第二次又用600元購進(jìn)該款鉛筆,但這次每支的進(jìn)價是第一次進(jìn)價的倍,購進(jìn)數(shù)量比第一次少了30支.

(1)求第一次每支鉛筆的進(jìn)價是多少元?

(2)若要求這兩次購進(jìn)的鉛筆按同一價格全部銷售完畢后獲利不低于420元,問每支售價至少是多少元?

【答案】解:(1)設(shè)第一次每支鉛筆進(jìn)價為x元,由第二次每支鉛筆進(jìn)價為x元。

根據(jù)題意列方程得,,解得,x=4。

檢驗:當(dāng)x=4時,分母不為0,

x=4是原分式方程的解。

答:第一次每支鉛筆的進(jìn)價為4元。

(2)設(shè)售價為y元,根據(jù)題意列不等式為:

解得,y≥6。

答:每支售價至少是6元。

解析分式方程和一元一次不等式組的應(yīng)用。

(1)方程的應(yīng)用解題關(guān)鍵是找出等量關(guān)系,列出方程求解。設(shè)第一次每支鉛筆進(jìn)價為x元,由第二次每支鉛筆進(jìn)價為x元。本題等量關(guān)系為:

第一次購進(jìn)數(shù)量-第二次購進(jìn)數(shù)量=30

=30。

(2)設(shè)售價為y元,求出利潤表達(dá)式,然后列不等式解答。利潤表達(dá)式為:

第一次購進(jìn)數(shù)量×第一次每支鉛筆的利潤+第二次購進(jìn)數(shù)量×第二次每支鉛筆的利潤

· · 。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8 cm,BC=6 cm,P,Q是△ABC邊上的兩個動點,點P從點A開始沿A→B方向運(yùn)動,且速度為1 cm,點Q從點B開始沿B→C方向運(yùn)動,且速度為2 cm/s,它們同時出發(fā),設(shè)運(yùn)動的時間為t s.

(1)運(yùn)動幾秒時,△APC是等腰三角形?

(2)當(dāng)點Q在邊CA上運(yùn)動時,求能使△BCQ成為等腰三角形的運(yùn)動時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,點C是直徑AB延長線上一點,過點C作⊙O的切線,切點為D,連結(jié)BD.
(1)求證:∠A=∠BDC;
(2)若CM平分∠ACD,且分別交AD、BD于點M、N,當(dāng)DM=1時,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+8與x軸、y軸分別相交于點A、B,設(shè)M是OB上一點,若將ABM沿AM折疊,使點B恰好落在x軸上的點B′處.求:

(1)點B′的坐標(biāo);

(2)直線AM所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著私家車擁有量的增加,停車問題已經(jīng)給人們的生活帶來了很多不便.為了緩解停車矛盾,某小區(qū)開發(fā)商欲投資16萬元,建造若干個停車位,考慮到實際因素,計劃露天車位的數(shù)量不少于室內(nèi)車位的2倍,但不超過室內(nèi)車位的3倍.據(jù)測算,建造費用及年租金如下表:

類別

室內(nèi)車位

露天車位

建造費用(元/個)

5 000

1 000

年租金(元/個)

2 000

800

(1)該開發(fā)商有哪幾種符合題意的建造方案?寫出解答過程.

(2)若按表中的價格將兩種車位全部出租,哪種方案獲得的年租金最多?并求出此種方案的年租金.(不考慮其他費用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,ABC是等腰直角三角形,∠BAC=90°,DE是經(jīng)過點A的直線,作BDDE,CEDE,

(1)求證:DE=BD+CE.

(2)如果是如圖2這個圖形,我們能得到什么結(jié)論?并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年“母親節(jié)”前夕,宜賓某花店用4000元購進(jìn)若干束花,很快售完,接著又用4500元購進(jìn)第二批花,已知第二批所購花的束數(shù)是第一批所購花束數(shù)的1.5倍,且每束花的進(jìn)價比第一批的進(jìn)價少5元
(1)求第一批花每束的進(jìn)價是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列因式分解,正確的是( )

A. x2y2-z2=x2y+z)(y-z B. -x2y+4xy-5y=-yx2+4x+5

C. x+22-9=x+5)(x-1 D. 9-12a+4a2=-3-2a2

【答案】C

【解析】解析:選項A.用平方差公式法,應(yīng)為x2y2-z2=xy+z·xy-z),故本選項錯誤.

選項B.用提公因式法,應(yīng)為-x2y+ 4xy-5y=- yx2- 4x+5),故本選項錯誤.

選項C.用平方差公式法,(x+22-9=x+2+3)(x+2-3=x+5)(x-1),故本選項正確.

選項D.用完全平方公式法,應(yīng)為9-12a+4a2=3-2a2,故本選項錯誤.

故選C.

點睛:(1)完全平方公式: .

(2)平方差公式:(a+b)(a-b)= .

(3)常用等價變形:

,

,

.

型】單選題
結(jié)束】
10

【題目】已知ab,c分別是ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2ABC( )

A. 等腰三角形 B. 等腰直角三角形

C. 直角三角形 D. 等腰三角形或直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動,且始終滿足∠BPC=90°,則a的最大值是

查看答案和解析>>

同步練習(xí)冊答案