【題目】某塑料廠生產(chǎn)一種家用塑料制品,它的成本是件,售價是件,年銷售量為萬件.為了獲得更好的效益,廠家準備拿出一定的資金做廣告.根據(jù)測算,若每年投入廣告費萬元,產(chǎn)品的年銷售量將是原銷售量的倍,且之間滿足,具體數(shù)量如下表:

(萬元)

1)求的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)如果把利潤看作是銷售總額減去成本費用和廣告費用,試求出年利潤(萬元)與廣告費用(萬元)的函數(shù)關(guān)系式,并計算每年投入的廣告費是多少萬元時,所獲得的利潤最大?

3)如果廠家希望年利潤(萬元)不低于萬元,請你幫助廠家確定廣告費的范圍.

【答案】(1);(2)年利潤(萬元)與廣告費用(萬元)的函數(shù)關(guān)系式為,每年投入的廣告費是萬元時,所獲得的利潤最大,為萬元;(3)當時,年利潤(萬元)不低于萬元.

【解析】

1)根據(jù)yx的函數(shù)關(guān)系式為y=ax2+bx+1,由待定系數(shù)法求出a,b即可;
2)由“利潤=銷售總額-成本費用-廣告費用”可以表示出Wx之間的關(guān)系式;
3)當y=14時代入(2)的解析式求出x的值,由二次函數(shù)的圖象特征就可以得出結(jié)論.

解:(1)由題意將(11.5),(2,1.8)代入,得

,解得

;

2)由題意,得,

時,

答:年利潤(萬元)與廣告費用(萬元)的函數(shù)關(guān)系式為,每年投入的廣告費是萬元時,所獲得的利潤最大,最大利潤為萬元;

3)當時,

解得,

時,年利潤(萬元)不低于萬元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+b和反比例函數(shù)y=k≠0)交于點A4,1).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積;

3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了獎勵優(yōu)秀班集體,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116,購買3幅乒乓球拍和2幅羽毛球拍共需204.

(1)每副乒乓球拍和羽毛球拍的單價各是多少元?

(2)若學校購買5副乒乓球拍和3副羽毛球拍,一共應支出多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,以為原點所在直線為軸建立平面直角坐標系,的頂點在反比例函數(shù)的圖象上.

1)求反比例函數(shù)的解析式:

2)將向右平移個單位長度,對應得到,當函數(shù)的圖象經(jīng)過一邊的中點時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x軸交于點AB,與y軸分別交于點C,其中點,點,且.

1)求拋物線的解析式;

2)點P是線段AB上一動點,過PBCD,當面積最大時,求點P的坐標;

3)點M是位于線段BC上方的拋物線上一點,當恰好等于中的某個角時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠C90°,ADDB,點EAB的中點,DEBC.

1)求證:BD平分∠ABC

2)連接EC,若∠A30°DC,求EC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數(shù)是單獨租用甲種車輛完成任務天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC6ADBC,DEAB交于點F,已知AD4,DF2EFsinDAB,則線段DE_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線)與,軸分別交于兩點,以為邊在直線的上方作正方形,反比例函數(shù)的圖象分別過點和點.,則的值為______.

查看答案和解析>>

同步練習冊答案