分析 (1)由AB為直徑得到∠ACO+∠BCO=90°,利用切線(xiàn)的性質(zhì)得∠BCO+∠BCD=90°,則根據(jù)等角的余角相等得到∠BCD=∠ACO,加上∠ACO=∠A,則∠A=∠BCD,則可根據(jù)相似三角形的判定方法可得到結(jié)論;
(2)由△CBD∽△ACD得到DC:DA=DB:DC,然后利用比例性質(zhì)可求出AB;
(3)由△CBD∽△ACD得到$\frac{BC}{AC}$=$\frac{BD}{CD}$=$\frac{2}{4}$=$\frac{1}{2}$,然后根據(jù)正切的定義求解.
解答 (1)證明:∵AB為直徑,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
∵CD為切線(xiàn),
∴OC⊥CD,
∴∠BCO+∠BCD=90°,
∴∠BCD=∠ACO,
∵OA=OC,
∴∠ACO=∠A,
∴∠A=∠BCD,
而∠BDC=∠CDA,
∴△CBD∽△ACD;
(2)解:∵△CBD∽△ACD,
∴DC:DA=DB:DC,即4:(2+AB)=2:4,
∴AB=6;
(3)解:∵△CBD∽△ACD,
∴$\frac{BC}{AC}$=$\frac{BD}{CD}$=$\frac{2}{4}$=$\frac{1}{2}$,
在Rt△ABC中,tan∠CAB=$\frac{BC}{AC}$=$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查了三角形相似的判定與性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過(guò)作平行線(xiàn)構(gòu)造相似三角形;在運(yùn)用相似三角形的性質(zhì)時(shí),主要利用相似進(jìn)行幾何計(jì)算.也考查了切線(xiàn)的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{7}{2}$ | B. | 2 | C. | $\frac{7}{2}$ | D. | -2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com