【題目】在平面直角坐標(biāo)系中,任意兩點(diǎn)A),B),規(guī)定運(yùn)算:AB=);AB=;當(dāng)時(shí),A=B,有下列四個(gè)命題:(1)若A1,2),B2,1),則AB=3,1),AB=0;

(2)若AB=BC,則A=C;

3)若AB=BC,則A=C;

(4)對(duì)任意點(diǎn)A、B、C,均有(AB)C=A(BC)成立,其中正確命題的個(gè)數(shù)為(

A1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

【答案】C

【解析】

試題分析:(1)AB=(1+2,2﹣1)=(3,1),AB=1×2+2×(﹣1)=0,所以(1)正確;

(2)設(shè)C(,),AB=(),BC=(,),而AB=BC,所以=,=,則,,所以A=C,所以(2)正確;

(3)AB=,BC=,而AB=BC,則=,不能得到,,所以A≠C,所以(3)不正確;

(4)因?yàn)椋ˋB)C=(),A(BC)=(),所以(AB)C=A(BC),所以(4)正確.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:
①(﹣11)+5
②5﹣(﹣ )+(﹣7)﹣
③(﹣3)2+(﹣16)÷[(﹣ )÷(﹣ )]
(2)化簡并求值
3(x2y+xy2)﹣2(xy+xy2)﹣ x2y,其中x是絕對(duì)值等于2的負(fù)數(shù),y是最大的負(fù)整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在菱形ABCD中,AB=,tanABC=2,點(diǎn)E從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿著射線DA的方向勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒),將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=BCD),得到對(duì)應(yīng)線段CF.

(1)求證:BE=DF;

(2)當(dāng)t= 秒時(shí),DF的長度有最小值,最小值等于 ;

(3)如圖2,連接BD、EF、BD交EC、EF于點(diǎn)P、Q,當(dāng)t為何值時(shí),EPQ是直角三角形?

(4)如圖3,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一個(gè)角α(α=BCD),得到對(duì)應(yīng)線段CG.在點(diǎn)E的運(yùn)動(dòng)過程中,當(dāng)它的對(duì)應(yīng)點(diǎn)F位于直線AD上方時(shí),直接寫出點(diǎn)F到直線AD的距離y關(guān)于時(shí)間t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣1,0,﹣2,1四個(gè)數(shù)中,最小的數(shù)是(
A.﹣1
B.0
C.﹣2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡:(2x-3)2-(2x-3)(2x+3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點(diǎn)E,交BC于點(diǎn)D,CD=3,則BC的長為(
A.6
B.6
C.9
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖

(1)若點(diǎn)P為AB的中點(diǎn),直接寫出點(diǎn)P對(duì)應(yīng)的數(shù);
(2)數(shù)軸的原點(diǎn)右側(cè)是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為8?若存在,請(qǐng)求出x的值;若不存在,說明理由;
(3)現(xiàn)在點(diǎn)A、點(diǎn)B分別以每秒2個(gè)單位長度和每秒0.5個(gè)單位長度的速度同時(shí)向右運(yùn)動(dòng),同時(shí)點(diǎn)P以每秒6個(gè)單位長度的速度從表示數(shù)1的點(diǎn)向左運(yùn)動(dòng).當(dāng)點(diǎn)A與點(diǎn)B之間的距離為3個(gè)單位長度時(shí),求點(diǎn)P所對(duì)應(yīng)的數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a、b、c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有處.

查看答案和解析>>

同步練習(xí)冊(cè)答案