【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(-1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中-2<x1<-1,0<x2<1,下列結(jié)論:①b<0;②a+b+c<0;③4a-2b+c<0;④2a-b<0,其中正確的有______.(填代號)
【答案】①②③④
【解析】
首先根據(jù)拋物線的開口方向可得到a<0,拋物線交y軸于正半軸,則c>0,而拋物線與x軸的交點(diǎn)中,-2<x1<-1、0<x2<1說明拋物線的對稱軸在-1~0之間,即,可根據(jù)這些條件以及函數(shù)圖象上一些特殊點(diǎn)的坐標(biāo)來進(jìn)行判斷.
由圖知:拋物線的開口向下,則a<0;拋物線的對稱軸,且c>0;
①∵對稱軸,a<0,∴b<0;故本選項(xiàng)正確;
②由圖可得:當(dāng)x=1時,y<0,即a+b+c<0,故本選項(xiàng)正確;
③由圖可得:當(dāng)x=-2時,y<0,即4a-2b+c<0,故本選項(xiàng)正確;
④由已知,且a<0,所以2a-b<0,故本選項(xiàng)正確
因此正確的結(jié)論是①②③④;
故答案是:①②③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一次函數(shù)的圖像.
(1)設(shè)它的圖像與軸軸分別交于、兩點(diǎn),求的長;
(2)求的面積;
(3)求點(diǎn)到直線的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線l上有A、B兩個碼頭,A在B的正東方向,一艘小船從A碼頭沿它的北偏西60°的方向行駛了20海里到達(dá)點(diǎn)P處,此時從B碼頭測得小船在它的北偏東45°的方向.求此時小船到B碼頭的距離(即BP的長)和A、B兩個碼頭間的距離(結(jié)果都保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,有一度數(shù)為60°的∠MAN繞點(diǎn)A旋轉(zhuǎn).
(1)如圖①,若∠MAN的兩邊AM,AN分別交BC,CD于點(diǎn)E,F(xiàn),則線段CE,DF的大小關(guān)系如何?請證明你的結(jié)論;
(2)如圖②,若∠MAN的兩邊AM,AN分別交BC,CD的延長線于點(diǎn)E,F(xiàn),猜想線段CE,DF的大小關(guān)系如何?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2x-3,點(diǎn)P在該函數(shù)的圖象上,點(diǎn)P到x軸、y軸的距離分別為d1、d2.設(shè)d=d1+d2,下列結(jié)論中: ①d沒有最大值; ②d沒有最小值; ③ -1<x<3時,d 隨x的增大而增大; ④滿足d=5的點(diǎn)P有四個.其中正確結(jié)論的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在離水面高度5米的岸上有人用繩子拉船靠岸,開始時繩子BC的長度為13米,此人以每秒0.5米的速度收繩.問:
(1)未開始收繩的時候,圖中船B距岸A的長度AB是多少米?
(2)收繩10秒后船向岸邊移動了多少米?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時針方向旋轉(zhuǎn)α度到△A1B1C1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E. F.
(1)求證:△BCF≌△BA1D.
(2)當(dāng)∠C=α度時,判定四邊形A1BCE的形狀并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,等邊邊長為6,是的中線,為線段(不包括端點(diǎn)、上一動點(diǎn),以為一邊且在左下方作如圖所示的等邊,連結(jié).
(1)點(diǎn)在運(yùn)動過程中,線段與始終相等嗎?說說你的理由;
(2)若延長至,使得,如圖2,問:
①求出此時的長;
②當(dāng)點(diǎn)在線段的延長線上時,判斷的長是否為定值,若是請直接寫出的長;若不是請簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若BC2=ADAB,求證:四邊形ADCE為正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com