【題目】一個(gè)三角形有兩邊長(zhǎng)分別為15和20,第三邊上的高為12,則第三邊的長(zhǎng)為______.
【答案】25或7
【解析】
此題考慮兩種情況:①第三邊上的高在三角形內(nèi)部;②第三邊上的高在三角形外部,分別利用勾股定理結(jié)合圖形進(jìn)行計(jì)算即可.
解:①第三邊上的高在三角形內(nèi)部;
如圖所示,AB=20,AC=15,AD=12,
∵AD是高,
∴△ABD、△ACD是直角三角形,
∴BD==16,
同理可求CD=9,
∴BC=BD+CD =16+9=25;
②第三邊上的高在三角形外部;
如右圖所示,AB=20,AC=15,AD=12,
∵AD是高,
∴△ABD、△ACD是直角三角形,
∴BD==16,
同理可求CD=9,
∴BC=BD-CD=16-9=7.
綜上所述,第三邊的長(zhǎng)度為25或7.
故答案是:25或7.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在離旗桿6m的A處,用測(cè)角儀測(cè)得旗桿頂端C的仰角為50°,已知測(cè)角儀高AD=1.5m,求旗桿BC的高(結(jié)果是近似數(shù),請(qǐng)你自己選擇合適的精確度).如果你沒有帶計(jì)算器,也可選用如下:sin50°≈0.7660 cos50≈0.6428 tan50°≈1.192
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是方城縣潘河的某一段,現(xiàn)要測(cè)量河的寬度(即河兩岸相對(duì)的兩點(diǎn)A、B間的距離),先在AB的垂線BF上取兩點(diǎn)C、D,使BC=CD,再定出BF的垂線DE,使點(diǎn)A、C、E在同一條直線上,直接在河岸上測(cè)量DE的長(zhǎng)度就知道河的寬度AB了,你知道這是為什么嗎?請(qǐng)先判斷DE和AB大小關(guān)系,然后說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點(diǎn)落在內(nèi)的點(diǎn)處.
(1)若,________.
(2)如圖①,若各個(gè)角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.
②當(dāng)點(diǎn)落在四邊形外部時(shí)(如圖②),(1)中的猜想是否仍然成立?若成立,請(qǐng)說明理由,若不成立,,,之間又存在什么關(guān)系?請(qǐng)說明。
(3)應(yīng)用:如圖③:把一個(gè)三角形的三個(gè)角向內(nèi)折疊之后,且三個(gè)頂點(diǎn)不重合,那么圖中的和是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)a2(﹣a4)+2(a2)3
(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)
(3)(2x﹣3y)2+2(y+3x)(3x﹣y)
(4)(a﹣2b+3)(a+2b+3)
(5)
(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)的直線與直線相交于點(diǎn),動(dòng)點(diǎn)在線段和射線上運(yùn)動(dòng).
(1)求直線的函數(shù)關(guān)系式.
(2)求的面積.
(3)是否存在點(diǎn),使的面積與的面積相等?若存在求出此時(shí)點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】件同型號(hào)的產(chǎn)品中,有件不合格品和件合格品
從這件產(chǎn)品中隨即抽取件進(jìn)行檢測(cè),列表或畫樹狀圖,求抽到都是合格品的概率.
在這件產(chǎn)品中加入件合格品后,進(jìn)行如下試驗(yàn):隨即抽取件進(jìn)行檢測(cè),然后放回,多次重復(fù)這個(gè)試驗(yàn),通過大量重復(fù)試驗(yàn)后發(fā)現(xiàn),抽到合格品的頻率穩(wěn)定在,則可以推算出的值大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞著點(diǎn)B順時(shí)針旋轉(zhuǎn)角a(0°<a<90°)得到△A1BC;A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論.
(2)如圖2,當(dāng)a=30°時(shí),試判斷四邊形BC1DA的形狀,并證明.
(3)在(2)的條件下,求線段DE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=5,DA=,則BD的長(zhǎng)為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com