【題目】中,如果一條直角邊和斜邊的長度都縮小至原來的,那么銳角的各個三角函數(shù)值(

A. 都縮小 B. 都不變 C. 都擴大 D. 無法確定

【答案】B

【解析】

RtABC,如果一條直角邊和斜邊的長度都縮小至原來的,根據(jù)勾股定理可知,另一條直角邊也縮小至原來的再根據(jù)三邊對應成比例的兩個三角形相似,可知這兩個直角三角形相似,由相似三角形的對應角相等可知銳角A的大小不變,所以銳角A的各個三角函數(shù)值也都不變

RtABC設∠C=90°,BC=a,AC=bAB=c,b=

如果在△ABCBC′=a,AB′=c,即一條直角邊a和斜邊c的長度都縮小至原來的

那么由勾股定理可知AC′==b

aa=bb=cc,∴△ABC∽△ABC∴∠A′=A,∴銳角A的各個三角函數(shù)值都不變

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質,易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖平行四邊形 ABCD ,A(﹣1,0)、B(0,﹣2),頂點 C、D 在雙曲線 y=x>0), AD y 軸于點 E若點 E 恰好是 AD 的中點, k=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段BD上一動點,分別過點B、DABBD,EDBD,連接AC、EC.已知AB=2,DE=1,BD=8,設CD=x

1)用含x的代數(shù)式表示AC+CE的長;

2)請問點C滿足什么條件時,AC+CE的值最;

3)根據(jù)(2)中的規(guī)律和結論,請構圖求出代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,在中,過,的垂線垂足為,,過,的垂線,垂足為,,不垂直).

(1)試說明:四邊形;

(2)四邊形是不是位似圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B 兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島PA港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.

(1)AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);

(2)甲、乙兩船分別從A,B兩港口同時出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結果求甲、乙兩船的速度各是多少海里/時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)x軸交于E-2,0),與y軸交于點Ax軸交于B(2,0),與y軸交于點D0,-4).它們的圖象如圖所示,請依據(jù)圖象回答以下問題:

1a  

2)確定的函數(shù)關系式

3)求ABC的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,圓心為Px,y)的動圓經過點A(2,8),且與x軸相切于點B.

(1)x>0,y=5時,求x的值;

(2)x = 6時,求⊙P的半徑;

(3)y關于x的函數(shù)表達式,請判斷此函數(shù)圖象的形狀,并在圖②中畫出此函數(shù)的圖象(不必列表,畫草圖即可).

圖① 圖②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結論的個數(shù)是( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

同步練習冊答案