【題目】已知:拋物線yax22mx3m2)(m0)交x軸于A、B兩點(其中A點在B點左側(cè)),交y軸于點C

1)若A點坐標(biāo)為(﹣1,0),則B點坐標(biāo)為 

2)如圖1,在 1)的條件下,且am1,設(shè)點My軸上且滿足∠OCA+AMO=∠ABC,試求點M坐標(biāo).

3)如圖2,在y軸上有一點P0,n)(點P在點C的下方),直線PA、PB分別交拋物線于點EF,若,求的值.

【答案】1)(3,0);(2)滿足要求的M點的坐標(biāo)有(0,﹣2)、(0,2);(3

【解析】

1)將A點坐標(biāo)代入拋物線解析式中求出m的值,然后可將拋物線解析式寫成交點式即可知道B點坐標(biāo).

2)先考慮My軸負半軸的情況,在y軸負半軸上截取OG=OA=1,連AG,可證△GMA∽△GAC,然后根據(jù)相似三角形的性質(zhì)列方程即可求出M點坐標(biāo),由對稱性可直接寫出另一種情況.

3)作EGx軸于點G,FHy軸于點H,由△EAGPAO得到線段比例等式推出OP的長度,得出P點坐標(biāo),算出直線PB解析式,與拋物線解析式聯(lián)立可求出F點橫坐標(biāo),再由△PFH∽△PBO即可得到所求線段比.

1)將(﹣10)代入yax22mx3m2)得:1+2m3m20,

解得:m1m=﹣(舍),

yax22mx3m2)=ax+1)(x3),

B3,0).

故答案為:(3,0).

2)當(dāng)am1時,拋物線解析式為yx22x3

C0,﹣3

OBOC3,∠ABC45°,

如圖1,My軸負半軸上,在y軸負半軸上截取OGOA1,連AG,

則∠AGO45°=∠ABCAG,

OCA+∠AMO=∠ABC

∴∠OCA+AMO45°,

又∵∠OCA+GAC=∠AGO45°,

∴∠AMG=∠GAC,

又∵∠AGM=∠CGA,

∴△GMA∽△GAC

AG2MGGC,

GCOCOG2,設(shè)M0,a

2=(﹣1a2,

a=﹣2,

M的坐標(biāo)為(0,﹣2).

根據(jù)對稱性可知(02)也符合要求.

綜上所述,滿足要求的M點的坐標(biāo)有:(0,﹣2)、(0,2).

3)由拋物線解析式可得:A(﹣m0),B3m0).

,

,

如圖2,作EGx軸于點G,FHy軸于點H

軸,軸,

EAGPAO,△PFH∽△PBO

,

AGAOmOP2EG,

xE=﹣myEam2,即EGam2

OPam2,

P0,﹣am2),

又∵B3m,0),

∴直線PB的解析式為:yamxam2,

amxam2ax22mx3m2),

2x27mx+3m20,

x13m(舍),x2m,

FHm,

PFH∽△PBO

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于的函數(shù)的圖象與坐標(biāo)軸只有兩個不同的交點、點坐標(biāo)為,則的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學(xué)興趣小組設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學(xué)生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了多少名學(xué)生?在扇形統(tǒng)計圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學(xué)生,請估計該校最喜歡用 “微信”進行溝通的學(xué)生大約有多少名?

(4)某天甲、乙兩名同學(xué)都想從微信"、""、電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學(xué)恰好選擇同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙只捕撈船同時從A港出海捕魚,甲船以每小時15 km的速度沿北偏西60°方向前進,乙船以每小時15 km的速度沿東北方向前進.甲船航行2 h到達C處,此時甲船發(fā)現(xiàn)漁具丟在了乙船上,于是甲船快速(勻速)沿北偏東75°的方向追趕乙船,結(jié)果兩船在B處相遇.問:

(1)甲船從C處出發(fā)追趕上乙船用了多少時間?

(2)甲船追趕乙船的速度是每小時多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對四門功課的喜歡情況,在全校范圍內(nèi)隨機抽取若干名學(xué)生進行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進行整理,并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計圖中∠α的度數(shù)是多少?

(2)請把條形統(tǒng)計圖補充完整;

(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項藝術(shù)形式中選擇其中兩項組成一個新的節(jié)目形式,請用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊上,為邊上一動點,連接關(guān)于所在直線對稱,點分別為的中點,連接并延長交所在直線于點,連接.當(dāng)為直角三角形時,的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC45°,∠ACB30°,將△ABC繞點A順時針旋轉(zhuǎn)得到△AB1C1,當(dāng)點C1B1、C三點共線時,旋轉(zhuǎn)角為α,連接BB1,交AC于點D.下列結(jié)論:AC1C為等腰三角形;AB1D∽△BCD③α75°;CACB1,其中正確的是(  )

A.①③④B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線l1,l2,l3,l4是同一平面內(nèi)的一組平行線.

1)如圖1,正方形ABCD4個頂點都在這些平行線上,若四條直線中相鄰兩條之間的距離都是1,其中點A,點C分別在直線l1l4上,求正方形的面積.

2)如圖2,正方形ABCD4個頂點分別在四條平行線上,若四條直線中相鄰兩條之間的距離依次為h1,h2,h3

①求證:h1h3

②設(shè)正方形ABCD的面積為S,求證:S2h12+2h1h2+h22

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DAB中點,過點DDF//BCAC于點E,且DE=EF,連接AF,CFCD

1)求證:四邊形ADCF為平行四邊形;

2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長.

查看答案和解析>>

同步練習(xí)冊答案