【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學興趣小組設計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次統(tǒng)計共抽查了多少名學生?在扇形統(tǒng)計圖中,表示" "的扇形圓心角的度數(shù)是多少;

(2)將條形統(tǒng)計圖補充完整;

(3)該校共有1500名學生,請估計該校最喜歡用 “微信”進行溝通的學生大約有多少名?

(4)某天甲、乙兩名同學都想從微信"、""、電話"三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率.

【答案】1100108°;(2)詳見解析;(3600人;(4

【解析】

1)利用喜歡“電話”溝通的人數(shù)除以其所占調(diào)查總?cè)藬?shù)的百分率即可求出調(diào)查總?cè)藬?shù),然后求出喜歡“QQ 溝通的人數(shù)占調(diào)查總?cè)藬?shù)的百分率,再乘360°即可求出結(jié)論;

2)用調(diào)查總?cè)藬?shù)×喜歡“短信”溝通的人數(shù)所占百分率即可求出喜歡“短信”溝通的人數(shù),然后用調(diào)查總?cè)藬?shù)減去其余“電話”、“短信”、“QQ”和“其它”溝通的人數(shù)即可求出喜歡用“微信”溝通的人數(shù),最后補全條形統(tǒng)計圖即可;

3)先求出喜歡用“微信”溝通的人數(shù)占調(diào)查總?cè)藬?shù)的百分率,再乘1500即可;

4)根據(jù)題意,畫出樹狀圖,然后根據(jù)概率公式計算即可.

解:(1)調(diào)查總?cè)藬?shù)為20÷20%=100

表示" "的扇形圓心角的度數(shù)是30÷100×360°=108°

(2)喜歡用“短信”溝通的人數(shù)為:100×5%=5人,

喜歡用“微信”溝通的人數(shù)為:100-20-5-30-5=40人,

補充條形統(tǒng)計圖,如圖所示:

(3)喜歡用“微信”溝通所占百分比為:

∴該校共有1500名學生,估計該校最喜歡用微信進行溝通的學生有:

人.

答:該校最喜歡用微信進行溝通的學生有600人.

(4)列出樹狀圖,如圖所示,

共有9種等可能的結(jié)果,其中兩人恰好選中同一種溝通方式共有3種情況,

所以甲、乙兩名同學恰好選中同一種溝通方式的概率為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,水壩的橫截面是梯形,迎水坡的坡角,背水坡的坡度,壩頂寬米,壩高5米.求:

1)壩底寬的長(結(jié)果保留根號);

2)在上題中,為了提高堤壩的防洪能力,市防汛指揮部決定加固堤壩,要求壩頂加寬0.5米,背水坡的坡度改為,已知堤壩的總長度為,求完成該項工程所需的土方(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,分別是兩棵樹及其影子的情形

1)哪個圖反映了陽光下的情形?哪個圖反映了路燈下的情形.

2)請畫出圖中表示小麗影長的線段.

3)陽光下小麗影子長為1.20m樹的影子長為2.40m,小麗身高1.88m,求樹高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C 是⊙O上一點,過點C 作⊙O的切線,交BA的延長線交于點D,過點B BEBA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC

1)求證:∠ECB=EBC;

2)連接BFCF,若BF=5,sinFBC=,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,射線互相垂直,點上的一個動點,點在射線上,,作并截取,連結(jié)并延長交射線于點.設,則關(guān)于的函數(shù)解析式是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l和雙曲線y=(k>0)交于A、B兩點,P是線段AB上的點(不與A、B重合),過點AB、P分別向x軸作垂線,垂足分別為C、DE,連接OA、OB、OP,設△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3,則( )

A.S1S2S3B.S1S2S3C.S1S2S3D.S1S2S3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)問題發(fā)現(xiàn)

如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,CD在一條直線上,填空:線段ADBE之間的關(guān)系為

2)拓展探究

如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=DCE=90°,請判斷ADBE的關(guān)系,并說明理由.

3)解決問題

如圖3,線段PA=,點B是線段PA外一點,PB=3,連接AB繞點A逆時針旋轉(zhuǎn)90°得到線段AC,隨著點B的位置變化,直接寫出PC的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,當線段AB與坐標軸不垂直時,以線段AB為斜邊作RtABC,且邊BCx軸,則稱AC+BC的值為線段AB的直角距離,記作LAB);當線段AB與坐標軸垂直時,線段AB的直角距離不存在.

1)在平面直角坐標系中,A14),B4,2),求LAB).

2)在平面直角坐標系中,點A與坐標原點重合,點Bx,y),且LAB)=2

當點Bx,y)在第一象限時,易知ACx,BCy.由AC+BCLAB),可得yx之間的函數(shù)關(guān)系式為   ,其中x的取值范圍是   ,在圖中畫出這個函數(shù)的圖象.

請模仿的思考過程,分別探究點B在其它象限的情形,仍然在圖中分別畫出點B在二、三、四象限時,yx的函數(shù)圖象.(不要求寫出探究過程)

3)在平面直角坐標系中,點A1,1),在拋物線yaxh2+5上存在點B,使得2LAB)≤4

a=﹣時,直接寫出h的取值范圍.

h0,且△ABC是等腰直角三角形時,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以原點O為圓心,3為半徑的圓與x軸分別交于A,B兩點(點B在點A的右邊),P是半徑OB上一點,過P且垂直于AB的直線與O分別交于C,D兩點(點C在點D的上方),直線AC,DB交于點E.若AC:CE=1:2.

(1)求點P的坐標;

(2)求過點A和點E,且頂點在直線CD上的拋物線的函數(shù)表達式.

查看答案和解析>>

同步練習冊答案