【題目】如圖1,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,已知折痕與邊BC交于點O,連結(jié)AP、OP、OA.

(1)求證:OCP∽△PDA;

(2)若OCPPDA的面積比為1:4,求邊AB的長;

(3)如圖2,擦去折痕AO、線段OP,連結(jié)BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結(jié)MNPB于點F,作MEBP于點E.探究:當點M、N在移動過程中,線段EF與線段PB有何數(shù)量關(guān)系?并說明理由.

【答案】1)見解析;(2)10;(3PB=2EF.

【解析】

(1)根據(jù)折疊的性質(zhì)可知得到∠APO=B=90°,根據(jù)相似三角形的判定定理證明即可;

(2)根據(jù)勾股定理計算即可;

(3)作MHABPBH,根據(jù)相似三角形的性質(zhì)得到BF=FH,根據(jù)等腰三角形的性質(zhì)得到PE=EH,得到答案.

(1)證明:由折疊的性質(zhì)可知,∠APO=B=90°,

∴∠APD+CPO=90°,又∠APD+DAP=90°,

∴∠DAP=CPO,又∠D=C=90°,

∴△OCP∽△PDA;

(2)∵△OCP∽△PDA,面積比為1:4,

,

CP=4,

設(shè)AB=x,則AP=x,PD=x-4,

由勾股定理得,AD2+PD2=AP2,即82+(x-4)2=x2,

解得,x=10,即AB=10;

(3)PB=2EF.

MHABPBH,

∴∠PHM=PBA,

AP=AB,

∴∠APB=PBA,

∴∠APB=PHM,

MP=MH,又BN=PM,

MH=BN,又∵MHAB,

BF=FH,

MP=MH,MEBP,

PE=EH,

PB=2EF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:①4ac<b2;、3a+c>0;③當x>0時,yx的增大而減小;④當y>0時,x的取值范圍是﹣1<x<3;⑤方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).

(1)求這個二次函數(shù)的表達式;

(2)若P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點,PHx軸于點H,與BC交于點M,連接PC.

①求線段PM的最大值;

②當PCM是以PM為一腰的等腰三角形時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC的垂直平分線EF交AC于點D,交AB于點F,且CE=BF.

(1)求證:四邊形AECF是菱形;

(2)當∠BAC的度數(shù)為多少時,四邊形AECF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=-3x+3x軸、y軸分別交于A、B兩點,以AB為邊在第一象限作正方形ABCD,點D在雙曲線y=(k≠0)上,將正方形沿x軸負方向平移a個單位長度后,點C恰好落在雙曲線上,則a的值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 的對稱中心在坐標原點,ABx 軸,AD、BC 分別與 x 軸交于 E、F,連接 BE、DF,若正方形 ABCD 的頂點 B,D在雙曲線 y 上,實數(shù) a 滿足 a1-a 1,則四邊形 DEBF 的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+3經(jīng)過A(﹣3,0)、B(1,0)兩點,其頂點為D,連接AD,點P是線段AD上一個動點(不與A、D重合).

(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;

(2)如圖1,過點PPEy軸于點E.求PAE面積S的最大值;

(3)如圖2,拋物線上是否存在一點Q,使得四邊形OAPQ為平行四邊形?若存在求出Q點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0

(1)證明原方程有兩個不相等的實數(shù)根;

(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.(友情提示:AB=|x1﹣x2|)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于拋物線,下列說法錯誤的是(

A. 開口向上 B. 時,經(jīng)過坐標原點O

C. 拋物線與x軸無公共點 D. 不論為何值,都過定點

查看答案和解析>>

同步練習(xí)冊答案