【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:①4ac<b2;、②3a+c>0;③當x>0時,y隨x的增大而減。虎墚y>0時,x的取值范圍是﹣1<x<3;⑤方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;其中結論正確的個數是( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】
利用拋物線與x軸的交點個數可對①進行判斷;由對稱軸方程得到b=﹣2a,然后根據x=﹣1時函數值為0可得到3a+c=0,則可對②進行判斷;根據二次函數的性質對③進行判斷;利用拋物線的對稱性得到拋物線與x軸的一個交點坐標為(3,0),則可對⑤進行判斷;根據拋物線在x軸上方所對應的自變量的范圍可對④進行判斷.
解:∵拋物線與x軸有2個交點,
∴b2﹣4ac>0,即4ac<b2,所以①正確;
∵x=﹣=1,即b=﹣2a,
而x=﹣1時,y=0,即a﹣b+c=0,
∴a+2a+c=0,即3a+c=0,所以②錯誤;
∵拋物線的對稱軸為直線x=1,開口向下,
∴當x>1時,y隨x增大而減小,所以③錯誤;
∵拋物線的對稱軸為直線x=1,
而點(﹣1,0)關于直線x=1的對稱點的坐標為(3,0),
∴方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,所以⑤正確;
∵拋物線與x軸的兩點坐標為(﹣1,0),(3,0),
∴當﹣1<x<3時,y>0,所以④正確.
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖①②③④,M,N分別是⊙O的內接正三角形ABC,正方形ABCD,正五邊形ABCDE,…,正n邊形ABCDEFG…的邊AB,BC上的點,且BM=CN,連接OM,ON.
(1)求圖①中∠MON的度數;
(2)圖②中,∠MON的度數是________,圖③中∠MON的度數是________;
(3)試探究∠MON的度數與正n邊形的邊數n的關系(直接寫出答案).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某公園內有座橋,橋的高度是5米,CB⊥DB,坡面AC的傾斜角為45°,為方便老人過橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3.若新坡角外需留下2米寬的人行道,問離原坡角(A點處)6米的一棵樹是否需要移栽?(參考數據: ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠BAC,過A,C,D三點的圓與斜邊AB交于點E,連接DE.
(1)求證:AC=AE;
(2)若AC=6,CB=8,求△ACD外接圓的直徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△BCD內接于⊙O,直徑AB經過弦CD的中點M,AE交BC的延長線于點E,連接AC,∠EAC=∠ABD=30°.
(1)求證:△BCD是等邊三角形;
(2)求證:AE是⊙O的切線;
(3)若CE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂部D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(1)求∠BCD的度數.
(2)求教學樓的高BD.(結果精確到0.1m,參考數據:tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2-4x+3.
(1)用配方法求其圖象的頂點C的坐標,并描述該函數的函數值隨自變量的增減而變化的情況;
(2)求函數圖象與x軸的交點A,B的坐標,及△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,已知折痕與邊BC交于點O,連結AP、OP、OA.
(1)求證:△OCP∽△PDA;
(2)若△OCP與△PDA的面積比為1:4,求邊AB的長;
(3)如圖2,擦去折痕AO、線段OP,連結BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結MN交PB于點F,作ME⊥BP于點E.探究:當點M、N在移動過程中,線段EF與線段PB有何數量關系?并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com