(1)求橢圓的方程, 查看更多

 

題目列表(包括答案和解析)








⑴求橢圓的方程;
⑵設為橢圓上任意一點,以為圓心,為半徑作圓,當圓與橢圓的右準線 有公共點時,求△面積的最大值

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點和兩焦點構成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

設橢圓的方程為 ,斜率為1的直線不經過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,求之間滿足的關系式;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求之間滿足的關系式.

查看答案和解析>>

設橢圓的方程為 ,斜率為1的直線不經過原點,而且與橢圓相交于兩點,為線段的中點.
(1)問:直線能否垂直?若能,之間滿足什么關系;若不能,說明理由;
(2)已知的中點,且點在橢圓上.若,求橢圓的離心率.

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:,

       是減函數(shù),由,得,,故選A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的單調遞增區(qū)間為

       (2)

             

             

             

18.解:(1)當時,有種坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列為          

0

2

3

4

              則

19.解:(1)時,

             

              又              ,

             

              是一個以2為首項,8為公比的等比數(shù)列

             

       (2)

             

              最小正整數(shù)

20.解法一:

       (1)設于點

              平面

于點,連接,則由三垂線定理知:是二面角的平面角.

由已知得

,

∴二面角的大小的60°.

       (2)當中點時,有平面

              證明:取的中點,連接、,則

              ,故平面即平面

              平面,

              平面

解法二:由已知條件,以為原點,以、、軸、軸、軸建立空間直角坐標系,則

             

       (1)

              ,設平面的一個法向量為

設平面的一個法向量為,則

二面角的大小為60°.

(2)令,則,

       ,

       由已知,,要使平面,只需,即

則有,得中點時,有平面

21.解:(1)由條件得,所以橢圓方程是

             

(2)易知直線斜率存在,令

       由

      

,

代入

       有

22.解:(1)

       上為減函數(shù),時,恒成立,

       即恒成立,設,則

       時,在(0,)上遞減速,

      

      

(2)若即有極大值又有極小值,則首先必需有兩個不同正要,

       即有兩個不同正根

       令

    ∴當時,有兩個不同正根

    不妨設,由知,

    時,時,時,

    ∴當時,既有極大值又有極小值.www.ks5u.com

 

 


同步練習冊答案