橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.
(1)(2)-1(3)見解析

試題分析:
(1)根據(jù)題意設(shè)出橢圓的方程,題目已知離心率即可得到的值,根據(jù)橢圓的幾何性質(zhì),短軸端點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形以焦距為底邊長(zhǎng),以短半軸長(zhǎng)為高,即該三角形的面積為,再根據(jù)之間的關(guān)系即可求出的值,得到橢圓的標(biāo)準(zhǔn)方程.拋物線的交點(diǎn)在x軸的正半軸,故拋物線的焦點(diǎn)為橢圓的右頂點(diǎn),即可求出得到拋物線的方程.
(2)討論直線AB的斜率,當(dāng)斜率不存在時(shí)與y軸沒有交點(diǎn),所以不符合題意,則斜率存在,設(shè)直線AB的斜率為k得到直線AB的方程,聯(lián)立直線與拋物線的方程得到AB兩點(diǎn)橫坐標(biāo)的韋達(dá)定理,把向量的橫坐標(biāo)帶入向量的坐標(biāo)表示得到之間的關(guān)系為反解,帶入,利用(韋達(dá)定理)帶入即可得到為定值.
(3)設(shè)出P,Q兩點(diǎn)的坐標(biāo),則可以得到的坐標(biāo),帶入條件得到P,Q橫縱坐標(biāo)之間的關(guān)系,因?yàn)镻,Q在橢圓上,則滿足橢圓的方程,這兩個(gè)條件得到的三個(gè)式子相加配方即可證明點(diǎn)S在橢圓上,即滿足橢圓的方程.
試題解析:
(1)由題意,橢圓的方程為,又
解得,∴橢圓的方程是.由此可知拋物線的焦點(diǎn)為,得,所以拋物線的方程為.      4分
(2)是定值,且定值為,由題意知,
直線的斜率存在且不為,設(shè)直線的方程為,
聯(lián)立方程組
消去得:,由,整理得可得
.      9分
(3)設(shè)
 ①
將點(diǎn)坐標(biāo)帶入橢圓方程得, ② ③
由①+②+③得
所以點(diǎn)滿足橢圓的方程,所以點(diǎn)在橢圓上.   13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)已知點(diǎn)是平面直角坐標(biāo)系上的一個(gè)動(dòng)點(diǎn),點(diǎn)到直線的距離等于點(diǎn)到點(diǎn)的距離的2倍.記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)斜率為的直線與曲線交于兩個(gè)不同點(diǎn),若直線不過點(diǎn),設(shè)直線的斜率分別為,求的數(shù)值;
(3)試問:是否存在一個(gè)定圓,與以動(dòng)點(diǎn)為圓心,以為半徑的圓相內(nèi)切?若存在,求出這個(gè)定圓的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,設(shè)曲線C1所圍成的封閉圖形的面積為,曲線C1上的點(diǎn)到原點(diǎn)O的最短距離為.以曲線C1與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓記為C2
(1)求橢圓C2的標(biāo)準(zhǔn)方程;
(2)設(shè)AB是過橢圓C2中心O的任意弦,l是線段AB的垂直平分線.Ml上的點(diǎn)(與O不重合).
①若MO=2OA,當(dāng)點(diǎn)A在橢圓C2上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡方程;
②若Ml與橢圓C2的交點(diǎn),求△AMB的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的方程為,其中.
(1)求橢圓形狀最圓時(shí)的方程;
(2)若橢圓最圓時(shí)任意兩條互相垂直的切線相交于點(diǎn),證明:點(diǎn)在一個(gè)定圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)F(-2,0),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比為,
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(m,0)在橢圓C的長(zhǎng)軸上,設(shè)點(diǎn)P是橢圓上的任意一點(diǎn),若當(dāng)最小時(shí),點(diǎn)P恰好落在橢圓的右頂點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C的方程為+y2=1,A、B是四條直線x=±2,y=±1所圍成的矩形的兩個(gè)頂點(diǎn).

(1)設(shè)P是橢圓C上任意一點(diǎn),若=m+n,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩個(gè)動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)為F1、F2,P是橢圓上一個(gè)動(dòng)點(diǎn),延長(zhǎng)F1P到點(diǎn)Q,使|PQ|=|PF2|,則動(dòng)點(diǎn)Q的軌跡為(  )
A.圓B.橢圓C.雙曲線一支D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面坐標(biāo)系xOy中,拋物線的焦點(diǎn)F與橢圓的左焦點(diǎn)重合,點(diǎn)A在拋物線上,且,若P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為(   )
A.6B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1,F(xiàn)2是橢圓=1的左、右兩個(gè)焦點(diǎn),若橢圓上滿足PF1⊥PF2的點(diǎn)P有且只有兩個(gè),則離心率e的值為(   )
A.B.C.D..

查看答案和解析>>

同步練習(xí)冊(cè)答案