相關(guān)習(xí)題
 0  265998  266006  266012  266016  266022  266024  266028  266034  266036  266042  266048  266052  266054  266058  266064  266066  266072  266076  266078  266082  266084  266088  266090  266092  266093  266094  266096  266097  266098  266100  266102  266106  266108  266112  266114  266118  266124  266126  266132  266136  266138  266142  266148  266154  266156  266162  266166  266168  266174  266178  266184  266192  266669 

科目: 來源: 題型:

【題目】已知橢圓的左、右兩個頂點(diǎn)分別為,點(diǎn)為橢圓上異于的一個動點(diǎn),設(shè)直線的斜率分別為,若動點(diǎn)的連線斜率分別為,且,記動點(diǎn)的軌跡為曲線.

(1)當(dāng)時,求曲線的方程;

(2)已知點(diǎn),直線分別與曲線交于兩點(diǎn),設(shè)的面積為,的面積為,若,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)通過()中的方程,求出y關(guān)于x的回歸方程;

(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?

(附:對于線性回歸方程其中

查看答案和解析>>

科目: 來源: 題型:

【題目】若拋物線的焦點(diǎn)是,準(zhǔn)線是,點(diǎn)是拋物線上一點(diǎn),則經(jīng)過點(diǎn)、且與相切的圓共( )

A. 0個 B. 1個 C. 2個 D. 4個

查看答案和解析>>

科目: 來源: 題型:

【題目】某地某所高中2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該?忌纳龑W(xué)情況,統(tǒng)計了該校2016年和2019年的高考升學(xué)情況,得到如圖所示:則下列結(jié)論正確的(

A.2016年相比,2019年一本達(dá)線人數(shù)有所減少

B.2016年相比,2019年二本達(dá)線人數(shù)增加了1

C.2016年相比,2019年藝體達(dá)線人數(shù)相同

D.2016年相比,2019年不上線的人數(shù)有所增加

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD是矩形,PA⊥底面ABCD,PAAB1AD,點(diǎn)FPB的中點(diǎn),點(diǎn)E在邊BC上移動.

(1)點(diǎn)EBC的中點(diǎn)時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;

(2)求證:無論點(diǎn)EBC邊的何處,都有;

(3)當(dāng)為何值時,與平面所成角的大小為45°.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,,二面角的大小為120°,點(diǎn)在棱上,且,點(diǎn)的重心.

1)證明:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】直三棱柱(側(cè)棱與底面垂直的棱柱)中,D中點(diǎn),F為線段的中點(diǎn).

1)若M中點(diǎn),求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】是兩個平面,m,n是兩條直線,有下列四個命題;

①如果,,,那么.

②如果,,那么.

③如果,那么.

④如果,,那么m所成的角和n所成的角相等.

其中正確的命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.

1)求證:平面平面;

2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性并指出相應(yīng)單調(diào)區(qū)間;

2)若,設(shè)是函數(shù)的兩個極值點(diǎn),若,且恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案